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Abstract—As the first decentralized cryptocurrency, Bitcoin
uses blockchain technology and proof-of-work (PoW) mechanism
where nodes spend computing resources and earn rewards in
return for spending these resources. This incentive system has
attracted many participants. However, at the same time, power
has been significantly biased towards a few nodes, called mining
pools. In addition, poor decentralization appears not only in PoW-
based coins but also in coins that adopt other mechanisms such as
proof-of-stake (PoS) and delegated proof-of-stake (DPoS) in which
nodes should possess stakes instead of computing resources.

In this paper, we target this centralization issue. To this end,
we first define (m, ε, δ)-decentralization as a state that satisfies 1)
there are at least m participants running a node and 2) the
ratio between the total resource power of nodes run by the
richest and δ-th percentile participants is less than or equal
to 1 + ε. Therefore, when m is sufficiently large, and ε and
δ are 0, (m, ε, δ)-decentralization represents full decentralization,
which is an ideal state. To see if it is possible to achieve good
decentralization (with a large value of m and small values of
ε and δ), we introduce sufficient conditions for the incentive
system of a blockchain to reach (m, ε, δ)-decentralization. Then
we find an incentive system satisfying these conditions. Through
this incentive system, a blockchain system can reach full de-
centralization with probability 1, regardless of its consensus
protocol. However, to adopt this incentive system, the blockchain
system should be able to assign a positive Sybil cost, where the
Sybil cost is defined as the difference between the cost for one
participant running multiple nodes and the total cost for multiple
participants each running one node. On the other hand, we prove
that when there is no Sybil cost, the probability of reaching
(m, ε, δ)-decentralization is upper bounded by a function of fδ ,
where fδ is the ratio between the resource power of the δ-th
percentile and the richest participants, and the value of the upper
bound is close to 0 for a small value of fδ . This result implies
that it is almost impossible for a system without Sybil costs to
reach good decentralization, considering the current gap between
the rich and poor.

To determine the conditions that each system cannot satisfy,
we also analyze protocols of all PoW, PoS, and DPoS coins in the
top 100 coins according to our conditions. Finally, we conduct
data analysis of these coins to validate our theory as well as the
result of the protocol analysis.

I. INTRODUCTION

Traditional currencies have a centralized structure with
a bank as a central authority, and thus there exist several
problems such as a single point of failure and corruption. For
example, the global financial crisis in 2008 was aggravated
by the flawed policies of banks that eventually led to many
bank failures, followed by an increase in the distrust of these

institutions. With this background, Bitcoin [1], which is the
first decentralized digital currency, has received considerable
attention. Given that it is a decentralized cryptocurrency,
unlike traditional financial systems, there is no organization
that controls the system.

To operate the system without any central authority, Bitcoin
uses the blockchain technology. Blockchain as a public ledger
stores transaction history, and nodes record the history on
the blockchain by generating blocks through a consensus
protocol, which provides a synchronized view among nodes.
Bitcoin adopts a consensus protocol using the PoW mechanism
in which nodes spend computational power to participate.
Moreover, nodes receive coins as rewards in return for spend-
ing computational power, and the reward increases with the
amount of spent computational power. This incentive system
has attracted many participants. However, at the same time,
computational power, which represents influence in PoW sys-
tems, has been significantly biased toward a few participants
(i.e., mining pools) who possess advanced technology and
great wealth. As a result, the Bitcoin system has achieved
poor decentralization, deviating from its original aim [2]–[4].

Since the success of Bitcoin, many (currently over 1,500)
cryptocurrencies have been developed. These cryptocurren-
cies have attempted to address several drawbacks of Bitcoin,
such as low transaction throughput, a significant waste of
energy due to the utilization of vast computational power,
and poor decentralization. Therefore, some cryptocurrencies
use consensus mechanisms different from PoW, such as PoS
and DPoS, in which nodes should have a stake instead of a
computing resource to participate in the system. While these
new consensus mechanisms have addressed several of the
drawbacks of Bitcoin, the problem of poor decentralization
still remains unsolved. For example, similar to PoW systems,
stakes, which represent influence in PoS and DPoS systems,
are also significantly biased toward a few participants. This
has caused concern for poor decentralization in PoS and DPoS
coins, along with a heated debate between PoS and DPoS in
terms of decentralization.

Currently, many coins suffer from two problems that de-
grade the level of decentralization: 1) insufficient number of
independent participants because of coalition of participants
(e.g., mining pools in PoW systems) and 2) a significantly
biased power distribution among them. Therefore, many devel-



opers have attempted to create a good decentralized system [5],
[6]. In addition, researchers such as Micali has noted that
“incentives are the hardest thing to do” and believe that
inappropriate incentive systems may cause blockchain systems
to be significantly centralized [7]. This fact implies that it is
currently an open problem as to whether we can design an
incentive system that allows a system to achieve good or full
decentralization.

Full decentralization. In this paper, for the first time, we
study when full decentralization can be reached. To this end,
we first define (m, ε, δ)-decentralization as a state satisfying
1) the number of participants running nodes in a consensus
protocol is not less than m and 2) the ratio between effective
power of the richest and δ-th percentile participants is not
greater than 1 + ε, where the effective power of a participant
represents the total resource power of nodes run by that
participant. The case when m is sufficiently large and ε and
δ are 0 represents full decentralization in which everyone has
the same power. To study if a high level of decentralization
is possible, we model a blockchain system (Section III) and
then find four sufficient conditions of the incentive system for
the blockchain system to converge in probability to (m, ε, δ)-
decentralization. If there is an incentive system satisfying these
four conditions, the blockchain system can reach (m, ε, δ)-
decentralization with probability 1, regardless of the underly-
ing consensus protocol. The four conditions are: 1) nodes with
any resource power earn rewards, 2) it is not more profitable
for participants to delegate their resource power to fewer
participants than to run their own nodes, 3) it is not more
profitable for a participant to run multiple nodes than to run
one node, and 4) the ratio between the resource power of the
richest and δ-th percentile nodes converges in probability to
a value of less than 1 + ε.

Impossibility. Based on these conditions, we find an incentive
system that allows a system to reach full decentralization. In
this incentive system, in order for the third condition to be
met, the cost for one participant running multiple nodes should
be greater than the total cost for multiple participants each
running one node. The difference between the former cost and
the latter cost is called a Sybil cost in this paper. This implies
that a system where Sybil costs exist can be fully decentralized
with probability 1.

When a system does not have Sybil costs, there is no
incentive system that satisfies the four conditions (Section V).
More specifically, the probability of reaching (m, ε, δ)-
decentralization is upper bounded by a function G(fδ) that
is close to 0 for a small ratio fδ between the resource power
of the δ-th percentile and the richest participants in the system.
This fact implies that the achievement of good decentralization
in the system without Sybil costs totally depends on the rich-
poor gap in the real world. As such, the larger the rich-
poor gap, the closer the probability is to zero. Currently, we
recognize that the distribution of wealth in the real world is
severely biased, and this wealth inequality is a significant well
known problem among economists [8]–[10]. To determine the

approximate ratio fδ in actual systems, we investigate hash
rates in Bitcoin and observe that f0 (δ = 0) and f15 (δ = 15)
are less than 10−8 and 1.5× 10−5, respectively. In this case,
f0 indicates the ratio between the resource power of the
poorest and richest participants. This result supports the fact
that, currently, it is almost impossible for blockchain systems
without Sybil costs to achieve good decentralization.

Unfortunately, it is not yet known how permissionless
blockchains that have no real identity management can have
Sybil costs. Indeed, to the best of our knowledge, all permis-
sionless blockchains do not currently have any Sybil costs.
Therefore, considering this fact, we note that currently, it
is almost impossible for permissionless blockchains to reach
good decentralization. The existence of mechanisms to enforce
a Sybil cost in permissionless blockchains is left as an open
problem. The solution to this issue would be the key to
determining how permissionless blockchains can reach a high
level of decentralization.

Protocol analysis in top 100 coins. Next, to find out if
what condition each system does not satisfy, we extensively
analyze incentive systems of all existing PoW, PoS, and
DPoS coins among the top 100 coins in CoinMarketCap [11]
according to the four conditions (Section VI). According to
this analysis, PoW and PoS systems cannot have both enough
participants running nodes and an even power distribution
among the participants. However, unlike PoW and PoS coins,
DPoS coins can guarantee an even power distribution among a
fixed number of participants when Sybil costs exist. Otherwise,
if the Sybil costs do not exist, rational participants would
run multiple nodes for higher profits. In this case, DPoS
systems cannot guarantee that any participant possesses the
same power.

Data analysis in top 100 coins. Furthermore, to validate the
result of the protocol analysis and our theory, we conduct data
analysis for PoW, PoS, and DPoS coins in the top 100 using
three metrics: the number of block generators, Gini coefficient,
and Shannon entropy (Section VII). Based on this empirical
study, we can observe the expected rational behaviors in
most existing coins. In addition, we quantitatively confirm
that the coins do not currently achieve good decentralization.
Moreover, interestingly, some DPoS coins are controlled by
only two participants who create multiple nodes. As a result,
this data analysis not only investigates the actual level of
decentralization, but also empirically confirms the analysis
results of incentive systems. Finally, we discuss a debate on
incentive systems and whether we can relax the conditions for
full decentralization (Section VIII).

In summary, our contributions are as follows.

• We formally define (m, ε, δ)-decentralization and find
four sufficient conditions of an incentive system.

• We prove that it is almost impossible for a system without
a Sybil cost to have a high level of decentralization.

• We analyze incentive systems of existing PoW, PoS,
and DPoS coins in the top 100 according to the four
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sufficient conditions. This result describes what condition
each system does not satisfy.

• Data analysis for these coins validates our theory as well
as showing quantitatively that current systems have poor
decentralization.

II. BACKGROUND

A. Blockchain

Blockchain – a distributed ledger shared among disparate
users – makes digital transactions possible without a central
authority. This great promise has fueled a number of innova-
tions such as cryptocurrencies [1], allowing users to exchange
funds by issuing transactions, and smart contracts [12], fa-
cilitating the execution of an arbitrary code on top of the
blockchain. The issued transactions and smart contracts are
validated and recorded on the blockchain by nodes called
block generators, which produce a block in a different way
depending on the respective consensus protocols.

Blockchains can be roughly classified as: permissionless
and permissioned. Permissioned blockchains typically rely on
some central authorities for identity management, whereas per-
missionless blockchains require some Sybil-resistance mech-
anisms to make attacks expensive. For example, most of
the popular blockchains rely on PoW in which the number
of Sybils that an adversary can spawn is limited based on
her computing resources. Therefore, for the adversary to
execute attacks in the PoW system, she should spend vast
computing resources. However, this PoW mechanism results
in low transaction throughput and a significant waste of
energy [13]. Besides, from the cases of Bitcoin and Ethereum,
it is observed that it is difficult for PoW systems to establish
good decentralization because the computing resources are
largely concentrated in few participants who have enormous
capital and advanced technology.

To solve these problems, another mechanism called PoS has
been proposed, which limits the adversary’s power based on
her stakes rather than her computing resource. Therefore, the
adversary would have to spend a large stake to be successful in
attacks. This mechanism addresses the issues of low transac-
tion throughput and the wastage of energy. However, PoS still
undermines decentralization because power would be concen-
trated in a few participants with considerable wealth, and this
concern resulted in the advent of the DPoS mechanism, which
deviates from existing permissionless blockchains. This mech-
anism forgoes the goal of full decentralization and instead is
designed for nodes with large wealth to have the same power.
This system allows users to delegate their stakes to a small set
of nodes called delegates, which further determine the order
of the transactions and generate blocks. Unlike PoW and PoS
where anyone can generate blocks, DPoS gives the opportunity
to only the delegates.

B. Decentralization

Decentralization is an essential factor that should be inher-
ently considered in the design of blockchain systems. Even
though people design systems for good decentralization, in

practice, we often observe that blockchain systems are highly
centralized. Bitcoin and Ethereum, as representative examples,
are already well known to be highly centralized in terms of
network and mining [4], [14]–[16]. Currently, most of the
computational power (or mining power) in these systems is
concentrated in only a few nodes, called mining pool,1 where
individual miners gather together for mining. This causes
concern for not only the level of decentralization, but also the
security of systems, because the mining power distribution
is critical in terms of security in PoW systems. Note that
an individual or organization with over 50% of the entire
computational power can attempt double-spending attacks in
PoW systems. Moreover, there is selfish mining [17] in which
an attacker with over 33% power can earn unfairly higher
profits at the expense of others.

In general, when a participant has large resource power, his
behavior would significantly influence others in the consensus
protocol. In other words, the more resources a participant
has, the greater his influence on the system. Therefore, the
resource power distribution implicitly represents the level of
decentralization in the system.

At this point, we can consider the following questions:
“What can influential participants do in practice?” and “Can
these behaviors harm other nodes?” Firstly, as described
above, there are attacks such as double spending and selfish
mining, which can be executed by an attacker with over
33% or 50% resource power. These attacks would result in
significant financial damage [18]. In addition, in a consensus
protocol combined with Practical Byzantine Fault Tolerance
(PBFT) [19], a malicious behavior of nodes that possess over
33% resource power can cause the consensus protocol to get
into a stuck state. It would certainly be more difficult for
such attacks to be executed by colluding with others when the
resource power is more evenly distributed. In addition, nodes
participating in the consensus protocol verify transactions and
generate blocks. More specifically, in the process of generating
a block, nodes choose which transactions will be included
in the block. Therefore, they can only choose advantageous
transactions while ignoring disadvantageous transactions. For
example, participants can exclude transactions issued by rivals
in the process of generating blocks, and if they possess large
power, validation of these transactions would often be delayed
because the malicious participant has many opportunities
to choose transactions that will be validated. Even though
the rivals can also retaliate against them, damage from the
retaliation depends on the power gap between the malicious
participants and their rivals.

Furthermore, transaction issuers should pay transaction fees
including gas in blockchain systems, where gas refers to the
cost associated with issuing smart contracts. The fees are
usually determined by economic interactions [20]. This implies
that the fees can depend on the behavior of block generators.
For example, if block generators verify only transactions that

1More specifically, it refers to a centralized mining pool. Even though there
is a decentralized mining pool, given that centralized pools are major pools,
hereafter, we will simply call them mining pools.
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have fees above a specific amount, the overall transaction fees
can increase because users would have to pay a high fee for
their transactions to be validated. In other words, some block
generators can attempt to increase the transaction fees for
higher profits, and when they possess larger resource power,
the fees may increase to a larger value. Indeed, we have
already experienced and observed a similar situation in the
real world when considering oligopoly. Note that companies
in oligopolistic industries can control the product price, and
they often increase the price.

Meanwhile, in fully decentralized systems, it is significantly
difficult for the aforementioned problems to occur. Moreover,
the system would certainly be fair to anyone. This spurs the
desire to achieve a fully decentralized system. Even though
many discussions and attempts have been made to achieve
good decentralization, existing systems, except for Bitcoin,
Ethereum and Stellar, have rarely been analyzed [4], [21]. In
this paper, for the first time, we not only study the possibility
of full decentralization but also extensively investigate the
existing coins.

III. SYSTEM MODEL

In this section, we model a consensus protocol and an
incentive system. Moreover, we introduce the notation used
throughout this paper (see Table I).
Consensus protocol. A blockchain system has a consensus
protocol where player pi participates and generates blocks by
running their own nodes. The set of all nodes in the consensus
protocol is denoted by N , and that of nodes run by player pi is
denoted byNpi . Moreover, we define P as the set of all players
running nodes in the consensus protocol (i.e., P = {pi| Npi 6=
∅}). Therefore, |N | is not less than |P|. In particular, if a
player has multiple nodes, |N | would be greater than |P|.

For nodes to join in the consensus protocol, they should
possess specific resources, and their influences significantly
depend on their resource power. The resource can be com-
putational power and stake in consensus protocols with PoW
and PoS mechanisms, respectively. Node ni ∈ N possesses
resource power αni(> 0). Moreover, we define the vector of
resource power for all nodes as follows: ᾱ = (αni)ni∈N . We
also denote the resource power owned by player pi as αpi
and the set of players with positive resource power as Pα
(i.e., Pα = {pi|αpi > 0}). Here, note that these two sets Pα
and P can be different because when a player delegates its
own power to others, it does not run nodes but possesses the
resource power (i.e., the fact that αpi > 0 does not imply
that Npi 6= ∅). For clarity, we describe a mining pool as an
example. In the pool, there are an operator and workers, where
the workers own their resource power but delegate it to the
operator without running a full node. Therefore, pool workers
belong to Pα but not P while the operator belongs to both
Pα and P .

In fact, the influence of player pi on the consensus protocol
depends on the total resource power of the nodes run by the
player rather than just its resource power αpi . Therefore, we
define EPpi , effective power of player pi as

∑
ni∈Npi

αni .

Again, considering the preceding example of mining pools, the
operator’s effective power is the sum of the resource power of
all pool workers while the workers have zero effective power.
The maximum and δ-th percentile of {EPpi | pi ∈ P} are
denoted by EPmax and EPδ , respectively, and ᾱNpi represents
a vector of resource power of the nodes owned by player pi
(i.e., ᾱNpi = (αni)ni∈Npi ). Note that EPmax and EP100 are
the same. In addition, we consider the average time to generate
one block as a time unit in the system. We use the superscript
t to express time t. For example, αtni and ᾱt represent the
resource power of node ni at time t and the vector of resource
power possessed by nodes at time t, respectively.
Incentive system. To incentivize players to participate in the
consensus protocol, the blockchain system needs to have an in-
centive system. The incentive system would assign rewards to
nodes, depending on their resource power. Here, we define the
utility function Uni(αni , ᾱ−ni) of the node ni as the expected
net profit per time unit, where ᾱ−ni represents the vector
of other nodes’ resource power and the net profit indicates
earned revenues, which subtracts all costs. Specifically, the
utility function Uni(αni , ᾱ−ni) of node ni can be expressed
as

Uni = E[Rni | ᾱ] =

{∑
Rni

Rni × Pr(Rni | ᾱ) if Rni is discrete∫
Rni

Rni × Pr(Rni | ᾱ) else,

where Rni is a random variable with probability distribution
Pr(Rni | ᾱ) for a given ᾱ. This equation for Uni and Rni
indicates that Uni is the arithmetic mean of the random
variable Rni for given ᾱ. In addition, while function Uni
indicates the expected net profit that node ni can earn for the
time unit, random variable Rni represents all possible values
of the net profit that node ni can obtain for the time unit. For
clarity, we give an example of the Bitcoin system, whereby
Rni and Pr(Rni | ᾱ) are defined as:

Rni =

{
12.5 BTC− cni if ni generates a block
−cni else,

Pr(Rni = a| ᾱ) =


αni∑

nj∈N
αnj

if a = 12.5 BTC− cni
1− αni∑

nj∈N
αnj

else,

where cni represents all costs associated with running node
ni during the time unit. This is because a node currently
earns 12.5 BTC as the block reward, and the probability of
generating a block is proportional to its computing resource.
Moreover, Rni cannot be greater than a constant Rmax, deter-
mined in the system. In other words, the system can provide
nodes with a limited value of rewards at a given time. Indeed,
the reward that a node can receive for a time unit cannot be
infinity, and problems such as inflation would occur if the
reward is significantly large.

In addition, if nodes can receive more rewards when they
have larger resource power, then players would increase their
resources by spending a part of the earned profit. In that
case, for simplicity, we assume that all players increase their
resource power per earned net profit Rni at rate r every time.
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For example, if a node earns a net profit Rtni at time t, the
node’s resource power would increase by r ·Rtni after time t.

We also define the Sybil cost function C(ᾱNpi ) as an
additional cost that a player should pay per time unit to run
multiple nodes compared to the total cost of when those nodes
are run by different players. The cost C(ᾱNpi ) would be 0
if |Npi | is 1 (i.e., the player pi runs one node). Moreover, the
case where C(ᾱNpi ) > 0 for any set Npi such that |Npi | > 1
indicates that the cost for one player to run M(> 1) nodes is
always greater than the total cost for M players each running
one node. Note that this definition does not just imply that it
is expensive to run many nodes, which is usually mentioned
as Sybil costs in the consensus protocol [22]. This function
implies that the total cost for running multiple nodes depends
on whether one player runs those nodes.

Finally, we assume that all players are rational. Thus, they
act in the system for higher utility. More specifically, if there
is a coalition of players in which the members can earn a
higher profit, they delegate their power to form such a coalition
(formally, it is referred to as a cooperative game). In addition,
if it is more profitable for a player to run multiple nodes as
opposed to one node, the player would run multiple nodes.

Table I
LIST OF PARAMETERS.

Notation Definition
pi Player of index i

P The set of players running nodes in the consensus
protocol

ni Node of index i
N The set of nodes in the consensus protocol
Npi The set of nodes owned by pi

αni , αpi The resource power of node ni and player pi
ᾱ The vector of resource power αni for all nodes
Pα The set of players with positive resource power
EPpi The effective power of nodes run by pi

EPmax, EPδ
The maximum and δ-th percentile of effective power
of players running nodes

ᾱNpi The vector of resource power of nodes run by pi
αtni The resource power of ni at time t

ᾱt The vector of resource power at time t
ᾱ−ni The vector of resource power of nodes other than ni

Uni (αni , ᾱ−ni ) Utility function of ni
Rni Random variable for a net reward of ni per time unit
Rmax The maximum value of random variable Rni
r Increasing rate of resource power per the net profit

C(ᾱNpi ) Sybil cost function of pi

IV. CONDITIONS FOR FULL DECENTRALIZATION

In this section, we study when a high level of decentral-
ization can be achieved. To this end, we first formally define
(m, ε, δ)-decentralization and introduce the sufficient condi-
tions of an incentive system in blockchain systems to reach
(m, ε, δ)-decentralization. Then, based on these conditions, we
find an incentive system that allows the system to be fully
decentralized.

A. Full Decentralization

The level of decentralization largely depends on two ele-
ments: the number of players running nodes in a consensus
protocol and the distribution of effective power among the
players. In this paper, full decentralization refers to the case
where a system satisfies 1) the number of players running
nodes is as large as possible and 2) distribution of effective
power among the players is even. Therefore, if a system does
not satisfy one of these requirements, it cannot have full
decentralization. For example, if only two players run nodes
with the same resource power, this case only satisfies the
second requirement. As another example, a system may have
many nodes run by independent players while the resource
power is biased toward a few nodes. Then, this case only
satisfies the first requirement. Clearly, both of these cases have
poor decentralization. Note that, as described in Section II,
blockchain systems based on a peer-to-peer network can be
manipulated by partial players who possess in excess of 50%
or 33% of the effective power. Next, to reflect the level of
decentralization, we formally define (m, ε, δ)-decentralization
as follows.

Definition IV.1 ((m, ε, δ)-Decentralization). For 1 ≤ m, 0 ≤
ε, and 0 ≤ δ ≤ 100, a system is (m,ε, δ)-decentralized if it
satisfies the followings:

1) The size of P is not less than m (i.e., |P| ≥ m).
2) The ratio between the effective power of the richest

player, EPmax, and the δ-th percentile player, EPδ , is
less than or equal to 1 + ε (i.e., EPmax

EPδ
≤ 1 + ε).

In Def. IV.1, the first requirement indicates that not only
there are players that possess resources, but also that at least m
players should run their own nodes. In other words, too many
players with resources do not combine into one node (i.e.,
many players do not delegate their resources to others.). Note
that delegation decreases the number of players running nodes
in the consensus protocol. The second requirement presents
an even distribution of effective power among players running
nodes. Specifically, for the richest and δ-th percentile players
running nodes, the gap between their effective power is small.
According to Def. IV.1, it is evident that the greater m and
the smaller ε and δ, the higher is the level of decentralization.
Therefore, (m, 0, 0)-decentralization for a sufficiently large m
indicates full decentralization in which there are sufficiently
many independent players and everyone has the same power.

B. Sufficient Conditions for Fully Decentralized Systems

Next, we introduce four sufficient conditions of an incentive
system to reach (m, ε, δ)-decentralization with probability 1.
We first revisit two requirements of (m, ε, δ)-decentralization.
For the first requirement in Def. IV.1, the size of N should
be greater than or equal to m because the size of P is
always not greater than that of N . This can be achieved by
assigning at least m nodes some rewards, which is represented
in Condition 1 (GR-m). In addition, it should not be more
profitable for too many players to combine into a few nodes
than when they directly run nodes. If such delegating behavior
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is more profitable than the one that is not, many players with
resource power would delegate their power to a few players,
resulting in |P| < m. Condition 2 (ND-m) indicates that it
should not be more profitable for nodes run by independent
(or different) players to combine into fewer nodes when the
number of all players running nodes is not greater than m.

Condition 1 (Give Rewards (GR-m)). At least m nodes
should earn net profit. Formally, for any ᾱ, |N+| ≥ m, where

N+ = {ni ∈ N |Uni(αni , ᾱ−ni) > 0}.

This condition states that some players can earn the reward
by running a node, and this makes the number of existing
nodes equal to or greater than m. Meanwhile, if the system
does not give net profit, rational players would not run a node
because the system requires a player to possess a specific
resource (i.e., αni > 0) to run a node unlike other peer-to-
peer systems such as Tor. Specifically, players should invest
their resource power elsewhere for higher profits instead of
participating in the consensus protocol where they cannot earn
net profit, which is called an opportunity cost [23]. As a result,
to reach (m, δ, ε)-decentralization, it is also necessary for a
system to give net profit to some nodes.

Condition 2 (Non-delegation (ND-m)). Nodes run by different
players do not combine into fewer nodes unless the number of
all players running nodes is greater than m. Before defining
it formally, we denote by Sd a set of nodes run by different
players. In other words, for any ni, nj ∈ Sd, the two players
running ni and nj are different. We also let sd denote a proper
subset of Sd such that |P(N\Sd ∪ sd)| < m, where

P(N\Sd∪sd) = {pi ∈ P | ∃ni ∈ (N\Sd∪sd) s.t. ni ∈ Npi}.

Then, for any node set Sd,

∑
ni∈Sd

Uni(αni , ᾱ−ni) ≥

max
sd Sd
ᾱd∈sdα

{ ∑
αni∈ᾱd

Uni(αni ,α
−
−ni(S

d\sd))
}
, (1)

where,

sdα =
{
ᾱd = (αni)ni∈sd

∣∣∣ ∑
αni∈ᾱd

αni =
∑
ni∈Sd

αni

}
,

and α−−ni(S
d\sd) = (αnj )nj 6∈Sd\sd,nj 6=ni .

The set P(N\Sd ∪ sd) presents all players running nodes,
which do not belong to Sd\sd. In Eq. (1), the left-hand side
represents the total utility of nodes in Sd that are individually
run by different players. Here, note that given that Sd ⊆ N ,
ᾱ−ni includes the resource power of the nodes in Sd except
for node ni. The right-hand side represents the maximum total
utility of nodes in sd when the nodes in Sd are combined into
fewer nodes belonging to sd by delegation of resource power
of players. Note that |sd| < |Sd| because sd  Sd. Therefore,

Eq. (1) indicates that the utility in the case where multiple
players delegate their power to fewer players is not greater
than that for the case where the players directly run nodes. As
a result, ND-m prevents delegation that makes the number of
players running nodes less than m, and the first requirement of
(m, ε, δ)-decentralization can be met when GR-m and ND-m
holds.

Next, we consider the second requirement in Def. IV.1. One
way to achieve an even distribution of effective power among
some players is to cause the system to have an even resource
power distribution among nodes while each player has only
one node. Note that, in this case where each player has only
one node, an even distribution of their effective power is equiv-
alent to an even resource power distribution among nodes.
Condition 3 (NS-δ) indicates that, for any player with above
the δ-th percentile effective power, running multiple nodes
is not more profitable than running one node. In addition,
to reach a state where the richest and δ-th percentile nodes
possess similar resource power, the ratio between the resource
power of these two nodes should converge in probability to
a value of less than 1 + ε. This is presented in Condition 4
(ED-(ε, δ)).

Condition 3 (No Sybil nodes (NS-δ)). For any player with
effective power not less than EPδ , participation with multiple
nodes is not more profitable than participation with one node.
Formally, for any player pi with effective power α ≥ EPδ,

max
{Npi : |Npi |>1}
ᾱNpi

∈Spiα

{ ∑
αni∈ᾱNpi

Uni

(
αni ,α

+
−ni(Npi)

)
− C(ᾱNpi )

}
≤ Unj (αnj = α, ᾱ−Npi ), (2)

where node nj ∈ Npi , the set ᾱ−Npi = (αnk )nk 6∈Npi ,
α+
−ni(Npi) = ᾱ−Npi ‖(αnk)nk∈Npi ,nk 6=ni , and

Spiα =
{
ᾱNpi = (αni)ni∈Npi

∣∣∣ ∑
αni∈ᾱNpi

αni = α
}
.

In Eq. (2), the left and right-hand sides represent the
maximum utility of the case where a player runs multiple
nodes of which the total resource power is α and a utility of
the case that he runs only one node nj with resource power
α, respectively. Therefore, Eq. (2) indicates that a player with
equal to or greater than the δ-th percentile effective power can
earn the maximum utility when he runs one node.

Condition 4 (Even Distribution (ED-(ε, δ))). The ratio be-
tween resource power of the richest and δ-th percentile nodes
should converge in probability to a value less than 1 + ε.
Formally, when αtmax and αtδ represent the maximum and δ-th
percentile of {αtni |ni ∈ N

t}, respectively,

lim
t→∞

Pr
[ αtmax
αtδ
≤ 1 + ε

]
= 1.
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The above condition indicates that the ratio between the
resource power of the richest and δ-th percentile nodes reaches
a value of less than 1+ε with probability 1 when enough time
is given. Note that αtni changes over time, depending on the
behavior of each player. In particular, if it is profitable for a
player to increase its effective power, αtni would be a random
variable related to Rtni because a player reinvests part of its
net profit Rtni to increase his resource. More specifically, in
that case, αtni increases to αtni+rR

t
ni after time t as described

in Section III.
As a result, these four conditions can allow blockchain

systems to reach (m, ε, δ)-decentralization with probability 1,
which is presented in the following theorem.

Theorem IV.1. For any initial state, a system satisfying GR-
m, ND-m, NS-δ, and ED-(ε, δ) converges in probability to
(m, ε, δ)-decentralization.

C. Possibility of Full Decentralization in Blockchain

To determine whether blockchain systems can reach full
decentralization, we study the existence of an incentive system
that satisfies the four conditions for a sufficiently large m,
δ = 0, and ε = 0. In this section, we provide an example of
incentive systems that satisfies the four conditions to achieve
full decentralization.

It is also important to increase the total resource power
involved in the consensus protocol in terms of security. This is
because if the total resource power involved in the consensus
protocol is small, an attacker can easily subvert the system.
Therefore, to prevent this, we construct Uni(αni , ᾱ−ni) as
an increasing function of αni , which implies that players
continually increase their resource power. In addition, we
construct random variable Rni and its probability Pr(Rni |ᾱ)
as follows:

Rni =

{
Br if ni generates a block
0 else

, (3)

Pr(Rni = a | ᾱ) =


√
αni∑

nj∈N
√
αnj

if a = Br

1−
√
αni∑

nj∈N
√
αnj

else
, (4)

Uni(αni , ᾱ−ni) =
Br ·
√
αni∑

nj∈N
√
αnj

, (5)

where the superscript t representing time t is omitted for
convenience. This incentive system indicates that when a node
generates a block, it earns the block reward Br and the
probability to generate a block is proportional to the square
root of the node’s resource power. Under this setting, we can
easily check that the utility function Uni is a mean of Rni .

Next, we show that this incentive system satisfies the four
conditions. First, the utility satisfies GR-m for any m because
it is always positive. ND-m is also satisfied because the below
equation is satisfied.

M∑
i=1

√
αni >

√√√√ M∑
i=1

αni ⇔
(∑
M<i

√
αni +

√√√√ M∑
i=1

αni

)
×

( M∑
i=1

√
αni

)
>

√√√√ M∑
i=1

αni ×
(∑
M<i

√
αni +

M∑
i=1

√
αni

)
⇔

∑M
i=1

√
αni∑

M<i

√
αni +

∑M
i=1

√
αni

>

√∑M
i=1 αni∑

M<i

√
αni +

√∑M
i=1 αni

⇔
M∑
i=1

Uni(αni , ᾱ−ni) > Uni

( M∑
i=1

αni

∣∣∣ (αnj )j>M)
Thirdly, to make NS-0 true, we can choose a proper Sybil

cost function C of Eq. (2), which satisfies the following:
M∑
i=1

Uni(αni , ᾱ−ni)−Uni
( M∑
i=1

αni

∣∣∣ (αnj )j>M) ≤ C((αni)i≤M )

Under this Sybil cost function, the rational players would
run only one node. Finally, to show that this incentive system
satisfies ED-(0, 0), we use the following theorem, whose proof
is presented in Appendix A.

Theorem IV.2. Assume that Rni is defined as follows:

Rni =

{
f(ᾱ) if ni generates a block
0 else

,

where f : R|N | 7→ R+. Then if Uni(αni , ᾱ−ni) is a strictly
increasing function of αni and the below equation is satisfied
for all αni > αnj , ED-(ε, δ) is satisfied for all ε and δ.

Uni(αni , ᾱ−ni)

αni
<
Unj (αnj , ᾱ−nj )

αnj
(6)

On the contrary, if Uni(αni , ᾱ−ni) is a strictly increasing
function of αni and Eq. (6) is not satisfied for all αni > αnj ,

ED-(ε, δ) cannot be met for all 0 ≤ ε <
EP 0

max

EP 0
δ
− 1 and 0 ≤

δ < 100.

The above theorem states that when the utility is a strictly
increasing function of αni and Eq. (6) is satisfied under the
assumption that the block reward is constant for a given ᾱ,
an even power distribution is achieved. Meanwhile, if Eq. (6)
is not met, the gap between rich and poor nodes cannot
be narrowed. Specifically, in the case where

Uni (αni ,ᾱ−ni )

αni
is constant, the large gap can be continued.2 Moreover, the
gap would widen when

Uni (αni ,ᾱ−ni )

αni
is a strictly increasing

function of αni . In fact, here we can consider
Uni (αni ,ᾱ−ni )

αni
as an increasing rate of resource power of node ni. Therefore,
Eq. (6) indicates that the resource power of a poor node
increases faster than that of a rich node.

Now, we describe why the incentive system defined by
Eq. (3), (4), and (5) satisfies ED-(0, 0). First, Eq. (3) is a
form of Rni described in Thm. IV.2, and Eq. (5) implies that
Uni is a strictly increasing function of αni . Therefore, ED-
(0, 0) is met by Thm. IV.2 because Eq. (5) satisfies Eq. (6)

2Formally speaking, the probability to reach an even distribution of resource
power among nodes is less than 1, and in Thm. V.3, we will deal with how
small the probability is.
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for all αni > αnj . As a result, the incentive system defined
by Eq. (3), (4), and (5) satisfies the four sufficient conditions,
implying that full decentralization is possible under a proper
Sybil cost function C. Moreover, Thm. IV.2 describes the
existence of infinitely many incentive systems, which can
achieve full decentralization. Interestingly, we find that an
incentive scheme similar to this is being considered by the
Ethereum foundation, and they also indicated that real identity
management can be important [5]. This fact is in accordance
with our results.

V. IMPOSSIBILITY OF FULL DECENTRALIZATION IN
PERMISSIONLESS BLOCKCHAINS

In the previous section, we showed that blockchain systems
can be fully decentralized under an appropriate Sybil cost
function C, where the Sybil cost represents additional costs
for a player running multiple nodes when compared to the
total cost for multiple players each running one node. In order
for a system to implement the Sybil cost function, we can
easily consider real identity management in which a trusted
third party (TTP) manages real identities of players. When
real identity management exists, it is certainly possible to
implement the Sybil cost. However, the existence of TTP
contradicts the concept of decentralization, and thus we cannot
adopt such identity management for a good decentralized
system. Currently, it is not yet known how permissionless
blockchains where such identity management does not exist
can implement the Sybil cost. In fact, many cryptocurrencies
are based on permissionless blockchains, and many people
want to design permissionless blockchains by their nature.
Unfortunately, as far as we know, currently, the Sybil cost
function C of all permissionless blockchains is zero. There-
fore, considering this fact (i.e., C = 0), in this section, we
study whether blockchains without Sybil costs can reach good
decentralization.

A. Almost Impossible Full Decentralization

To determine if it is possible for a system without a Sybil
cost to reach full decentralization, we describe the below
theorem for which the proof is presented in Appendix B.

Theorem V.1. Consider a system without a Sybil cost (i.e.,
C = 0). Then the probability for the system to reach (m, ε, δ)-
decentralization is always less than or equal to

max
s∈S

Pr[System s reaches (m, ε, δ)-decentralization],

where S is the set of all systems satisfying GR-|N |, ND-|Pα|,
and NS-0.

GR-|N | means that all nodes can earn net profit, and satisfac-
tion of both ND-|Pα| and NS-0 indicates that all players run
only one node without delegating. The above theorem implies
that the maximum probability for a system satisfying GR-
|N |, ND-|Pα|, and NS-0 to reach (m, ε, δ)-decentralization
is equal to the global maximum probability. Moreover,
according to Thm. V.1, there is a system satisfying GR-|N |,
ND-|Pα|, NS-0, and ED-(ε, δ) if and only if there is a system

that converges in probability to (m, ε, δ)-decentralization. As
a result, it is sufficient to determine the maximum probability
for a system satisfying GR-|N |, ND-|Pα|, and NS-0 to reach
(m, ε, δ)-decentralization. Therefore, we first find a utility
function that satisfies GR-|N |, ND-|Pα|, and NS-0 through
the following lemma.

Lemma V.2. When the Sybil cost function C is zero, GR-|N |,
ND-|Pα|, and NS-0 are met if and only if

Uni(αni , ᾱ−ni) = F
( ∑
nj∈N

αnj

)
· αni , (7)

where F : R+ 7→ R+.

This lemma shows that the utility function is linear for given
the total resource power of nodes, and players would run one
node with their own resource power under this utility (i.e.,
net profit) because delegation of their resource and running
multiple nodes are not more profitable than running one
node with their resource power. The proof for this lemma is
presented in Appendix C.

Then we consider whether Eq. (7) can satisfy ED-(ε, δ).
Note that the fact that ED-(ε, δ) is met means that the
probability to reach (m, ε, δ)-decentralization is 1. Therefore,
it is sufficient to answer the following question: “What is the
probability of a system defined by Eq. (7) to reach (m, ε, δ)-
decentralization?” Thm. V.3 states the answer by providing the
upper bound of probability. The proof of Thm. V.3 is presented
in Appendix D. Before describing the theorem, we introduce
several notations. Given that players start to run nodes in the
consensus protocol at different times in practice, P would be
different depending on the time. Thus, we use notations Pt
and Ptδ to reflect this, where Ptδ is defined as:

Ptδ = {pi ∈ Pt|EP tpi ≥ EP
t
δ}.

In other words, Ptδ indicates the set of all players who possess
above the δ-th percentile effective power at time t. Moreover,
we define αMAX and fδ as

αMAX = max
{
α
t0i
pi

∣∣ pi ∈ lim
t→∞

Pt
}
,

fδ = min

{
α
t0ij
pi

α
t0ij
pj

∣∣∣∣∣ pi, pj ∈ lim
t→∞

Ptδ, t0ij = max{t0i , t0j}
}
,

where t0i denotes the time at which player pi starts to partic-
ipate in a consensus protocol. The parameter αMAX indicates
the initial resource power of the richest player among the
players who remain in the system for a long time. Moreover,
fδ represents the ratio between the δ-th percentile and largest
initial resource power of players who remain in the system
for a long time. Considering these notations, we present the
below theorem.

Theorem V.3. When Sybil cost function C is zero, the follow-
ing holds for any incentive system:

lim
t→∞

Pr

[
EP tmax
EP tδ

≤ 1 + ε

]
< Gε

(
fδ,

rRmax

αMAX

)
, (8)
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where limfδ→0G
ε(fδ,

rRmax

αMAX
) and limαMAX→∞Gε(fδ,

rRmax

αMAX
)

are 0. Specifically, the function Gε(fδ,
rRmax

αMAX
) is defined as

Eq. (36).

This theorem implies that the probability of reaching
(m, ε, δ)-decentralization is less than Gε(fδ,

rRmax

αMAX
). Here,

note that rRmax represents the maximum resource power
that a player can increase for time unit. Given that
limfδ→0G

ε(fδ,
rRmax

αMAX
) = 0, the upper bound would be smaller

when the rich-poor gap in the current state is larger. In
addition, the fact that limαMAX→∞Gε(fδ,

rRmax

αMAX
) implies that

the more resource power the richest player possesses than the
maximum value that a player can increase for time unit, the
smaller the upper bound.

To determine how small Gε(fδ, rRmax

αMAX
) is for a small value

of fδ , we adopt a Monte Carlo method. This is because it
requires a large complexity to directly compute a value of
Gε(fδ,

rRmax

αMAX
). Fig. 1 represents the value of Gε(fδ, rRmax

αMAX
) in

regard to fδ and ε when rRmax

αMAX
is 0.1. Note that ε = 0 means

that a state should reach (m, ε, δ)-decentralization in which the
effective power of the richest is equal to the δ-th percentile. In
addition, the fact ε = 9, 99, and 999 indicates that the effective
power of the richest is 10 times, 100 times, and 1000 times
the δ-th percentile in (m, ε, δ)-decentralization, respectively.

Figure 1. In this figure, when rRmax
αMAX

is 0.1, Gε(fδ,
rRmax
αMAX

) (y-axis) is
presented with regard to fδ (x-axis) and ε.

Fig. 1 shows that the probability to reach (m, ε, δ)-
decentralization is smaller when fδ and ε are smaller. Through
Fig. 1, one can see that the value of Gε(fδ, rRmax

αMAX
) is signif-

icantly small for a small value of fδ . This result states that
the probability to reach good decentralization is close to 0 if
there is a large gap between rich and poor and the resource
power of the richest is large (i.e., the ratio rRmax

αMAX
is not large3).

The values of Gε(fδ, rRmax

αMAX
) when rRmax

αMAX
is 10−2 and 10−4

are represented in Appendix E, and the values are certainly
smaller than that presented in Fig. 1.

To determine how small the ratio fδ is at present, we use the
hash rate of all users in the Slush mining pool [24] in Bitcoin
as an example. We find miners with hash rate less than 3.061
GH/s and greater than 404.0 PH/s as of the time of writing.
Referring to these data, we can see that the ratio f0 (i.e., the ra-
tio between resource power of the poorest and richest players)

3The ratio rRmax
αMAX

does not need to be small.

is less than about 7.58× 10−9(≈ 3.061×109
404.0×1015 ). In addition, we

observe that 15-th percentile and 50-th percentile hash rates are
less than 5.832 TH/s and 25.33 TH/s, respectively. Therefore,
ratio f15 and f50 are less than approximately 1.44 × 10−5

and 6.27×10−5, respectively. This example indicates that the
rich-poor gap is significantly large. Moreover, we observe an
upper bound of rRmax

αMAX
in the Bitcoin system. Given that the

block reward is 12.5 BTC (≈ $65, 504), the maximum value
of rRmax is approximately 384 TH. This maximum value can
be derived, assuming that a player reinvests all earned reward
to increase his hash power. Then an upper bound of rRmax

αMAX

would be 9.5× 10−4, and this value is certainly less than the
value of 0.1 used in Fig. 1. As a result, Thm. V.3 implies
that, currently, it is almost impossible for a system without
Sybil costs to reach good decentralization.

B. Intuition and Implication

Here, we describe intuitively why a permissionless
blockchain cannot reach good decentralization. In fact, be-
cause a player with great wealth can possess more resources,
the initial distribution of resource power in a system signifi-
cantly depends on the distribution of wealth in the real world
when the system does not have any constraint of participation
and can attract many players. Therefore, if wealth is equally
distributed in the real world and many players are incentivized
to participate in the consensus protocol, full decentralization
can be easily achieved even in permissionless blockchains
where anyone can join without any permission process. How-
ever, according to many research papers and statistics, the rich-
poor gap has been significant in the real world [8]–[10]. In
addition, the wealth inequality is well known as one of the
most glaring deficiencies in today’s capitalism, and resolving
this problem is quite difficult.

In the permissionless blockchain, players can freely par-
ticipate without any restriction, and large wealth inequality
would initially appear. Therefore, for the system to have good
decentralization, its incentive system should be designed to
gradually narrow the rich-poor gap. To this end, we can con-
sider the following incentive system, which gradually narrows
the huge rich-poor gap: In the system, nodes receive net profit
in proportion to a square root of their resource power on
average (e.g., Eq. (5)). In Section IV-C, we have already
proved that this incentive system can make the resource power
distribution among nodes more even, implying that it satisfies
ED-(ε, δ). However, this alone cannot satisfy NS-δ when there
is no Sybil cost (i.e., C = 0). Therefore, to satisfy NS-δ,
we can establish that the expected net profit decreases when
the number of existing nodes increases. For example, Br in
Eq. (5) can be a decreasing function of the number of existing
nodes. In this case, players with large resources would not run
Sybil nodes because when they do so, their utilities decrease
by increasing the number of nodes. However, this approach
has a side-effect, which leads players to delegate their power
to a few players because they can earn higher profits as this
rational behavior decreases the number of existing nodes. As
a result, the above example intuitively describes that the four
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conditions are contradictory when the Sybil cost does not
exist,4 and whether the permissionless blockchain can achieve
good decentralization completely depends on how wide the
gap is between the rich and poor in the real world. This fact
is supported by Thm. V.3.

On the other hand, if we can find out how to implement
the Sybil costs in permissionless blockchains, which do not
have real identity management, we would be able to design
the permissionless blockchain reaching good decentralization.
We leave this as an open problem.

C. Question and Answer

In this section, to further clarify the implications of our
result, we present questions that academic reviewers or
blockchain engineers have considered in the past and provide
answers to them.
[Q1] “Sybil attacks are when one physical node claims
multiple identities but creating more identities does not
increase your mining power, so why is this a problem?”
Firstly, note that decentralization is significantly related to real
identities. In other words, when the number of independent
players in a system is large and power distribution among
them is even, the system has good decentralization. In this
paper, we do not claim that the more Sybil nodes exist, the
lower decentralization level is. We simply assert that a system
should be able to know the current power distribution among
players to reach good decentralization, and the system without
real identity management can know the distribution when each
player runs only one node. Moreover, we prove that, to reach
good decentralization as much as possible, all players should
run only one node (Thm. V.1).
[Q2] “Would a simple puzzle for registering as a block-
submitter not be a possible sybil cost, without identity
management?” According to the definition of Sybil cost
(Section III), the cost to run one node should depend on
whether a player runs another node. More specifically, the
cost to run one node that a player with other nodes should
pay should be more expensive than that for a player with
no other nodes. Therefore, the proposed scheme cannot give
Sybil cost. Again, note that the Sybil cost described in this
paper is different from that usually mentioned in PoW and
PoS systems [22].
[Q3] “If mining power is delivered in proportion to the
resources one has available (which would be an ideal
situation in permissionless systems), achievement of good
decentralization is clearly an impossibility. This seems
rather self-evident.” Naturally, a system would be signif-
icantly centralized in the initial state because the rich-poor
gap is large in the real world and only a few players may be
interested in the system at the early stage. Considering this
fact, our work studies whether there is a mechanism, which
causes a system to achieve good decentralization. Note that
our goal is to reduce the gap between the effective power of

4This does not imply the impossibility of full decentralization. It only
represents that the probability to reach full decentralization is less than 1.

the rich and poor, not the gap between their resource power.
In other words, even if the rich possess significantly large
resource power, the decentralization level can be high when
the rich participate in the consensus protocol with only part of
their resource power and so not large effective power. To this
end, we can consider a utility function, which is a decreasing
function for a large input (e.g., a concave function). However,
this function cannot still achieve good decentralization because
it does not satisfy NS-δ. Note that, under a mechanism
satisfying the four conditions, a system can always reach good
decentralization whatever the initial state is. Unfortunately,
our result states that there is no mechanism satisfying the
four conditions, which implies that the probability to reach
good decentralization is less than 1. To make matters worse,
Thm. V.3 states that the probability is upper bounded by a
value close to 0. As a result, this implies that it is almost
impossible for us to create a system with good decentralization
without any Sybil cost, even if enough time is given.

[Q4] “I think when the rich invest a lot of money in
a system, the system can become popular. So, if the
large power of the rich is not involved in the system,
can it become popular?” In this paper, we focus on the
decentralization level in a consensus protocol, which performs
a role as a government of systems. Therefore, good decentral-
ization stated in this paper implies a fair government rather
than indicating that there is no rich and poor in the entire
system. If the rich invest a lot of money in business (e.g.,
an application based on the smart contract) running on the
system instead of the consensus protocol, the system may have
a fair government and become popular. Indeed, the efforts to
make a fair government also appear in the real world because
people are extremely afraid of an unfair system where the rich
influence government through a bribe.

VI. PROTOCOL ANALYSIS

In this section, to determine if what condition each system
satisfies or not, we extensively analyze the incentive systems
of the top 100 coins according to the four conditions. Based
on this analysis, we can find out whether each system can
have sufficient independent players and the even distribution of
effective power among the players. This analysis also describes
what each blockchain system needs for good decentralization.

A. Top 100 Coins

Before analyzing the incentive systems based on the four
conditions, we classified the top 100 coins in CoinMarket-
Cap [11] according to their consensus protocol. Most of them
use one of the following three consensus protocols: PoW,
PoS, and DPoS. Specifically, there exist 44 PoW, 22 PoS,
and 11 DPoS coins. In addition, there are 15 coins that
use other consensus protocols such as Federated Byzantine
Agreement (FBA), Proof of Importance, Proof of Stake and
Velocity [25], and hybrid. Furthermore, we classify five coins
including XRP [26], NEO [27], VeChain [28], Ontology [29],
and GoChain [30] into permissioned systems. This is because
in these systems, only players that are chosen by the coin
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foundation can run nodes in the consensus protocol. Finally,
there exist one token, Huobi Token, and two cryptocurrencies
that are non-operational, BitcoinDark and Boscoin. Table II
summarizes the classification of top 100 coins described
above.

B. Analysis

Next, we analyze the blockchain systems of the top 100
coins according to the four sufficient conditions. In this study,
we focus on the analysis of coins using PoW, PoS, and DPoS
algorithms, which are major consensus mechanisms of non-
permissioned blockchains, to identify which conditions cannot
be currently satisfied in each system. If a system satisfies both
GR-m and ND-m, we can expect that many players participate
in its consensus protocol and run nodes. In addition, if the
system satisfies both NS-δ and ED-(ε, δ), the effective power
would be more evenly distributed among the players. Table III
represents the results of analysis, where the black circle ( ),
half-filled circle ( ), and empty circle ( ) indicate full, partial,
and non-satisfaction of the corresponding condition, respec-
tively. In addition, we mark each coin system with a triangle
(s) and an X (7) when it partially implements and does not
implement a Sybil cost, respectively. Here, partial Sybil cost
means that multiple nodes run by one player can avoid paying
the Sybil cost by pretending that they are run by different
players (i.e., players who have different real identities). Note
that PoW, PoS, and DPoS coins cannot have perfect Sybil
costs because they are non-permissioned blockchains. In fact,
it is currently not known how Sybil costs are implemented
in blockchain systems without real identity management. We
present detailed analysis results in the following sections.

1) Proof of Work: Most PoW systems are designed to give
nodes a block reward in proportion to the relative computa-
tional power of each node to the total power. In addition, there
exist electric bills that are dependent on the computational
power and other costs associated with running a node, such
as a large memory for storage of blockchain data, which is
independent of the computational power. Considering these
facts, we can express a utility (i.e., an expected net profit)
Uni(αni , ᾱ−ni) of node ni as follows.

Uni(αni , ᾱ−ni) = Br ·
αni∑
nj
αnj
− c1 · αni − c2 (9)

In Eq. (9), Br represents the block reward (e.g., 12.5 BTC
in the Bitcoin system) that a node can earn for a time unit,
and c1(> 0) and c2(> 0) represent the electric bill per com-
putational power and the other costs needed during the time
unit, respectively. In particular, the cost c2 is independent of
the computational power. The values of the three coefficients,
Br, c1, and c2, determine whether the four conditions are
satisfied.

Firstly, for the system to satisfy GR-m for any m, it should
be able to assign rewards to nodes with small computational
power. Considering Eq. (9) for appropriate values of Br,
there is ᾱ = (αni)ni∈N such that Uni(αni , ᾱ−ni) > 0

for all nodes ni. However, there also exists αni such that
Uni(αni , ᾱ−ni) < 0 for given ᾱ−ni , which implies that the
PoW system cannot satisfy GR-m for some m. For example, if∑
nj
αnj is significantly large and αni is small enough, Eq. (9)

would be negative because the first term of the right-hand side
of Eq. (9) is close to 0.

We can observe this situation in practical PoW systems.
In these systems, nodes can generate blocks using CPUs,
GPUs, FPGAs, and ASICs, with computational power ranging
from low at the CPU level to high at the ASIC level. In
particular, the value of c1 decreases from CPUs to ASICs.
In other words, ASICs have better efficiency than the others.
Currently, PoW coins can be divided into ASIC-resistant coins
and coins that allow ASIC miners. The latter (e.g., Bitcoin
and Litecoin) allow miners to use ASIC hardware, which has
rapidly increased their total computational power. However,
as a side-effect, CPU mining has been unprofitable because
the electric bill of CPU miners is larger than their earned
rewards. For this reason, several coins such as Ethereum
were developed to resist ASIC miners, but ASIC-resistant
algorithms cannot be a fundamental solution. These algorithms
only prevent the rapid growth of the total computational
power; nodes with small computational power can still suffer
a loss. For example, even though Ethereum has an ASIC-
resistant algorithm, Ethash [119], CPU miners cannot earn net
profit by mining Ethereum [120]. Therefore, these PoW coins
only partially satisfy GR-m because there exists ᾱ such that
Uni(αni , ᾱ−ni) < 0 for some nodes ni. As special cases,
we consider IOTA and BridgeCoin, where there is no block
reward because coin mining does not exist or has already been
completed. These systems do not satisfy GR-m at all because
the utility Uni is negative for all ᾱ.

In addition, PoW systems cannot satisfy ND-m. This is
because when m players run their own node, they need to
pay the additional cost (m − 1) · c2, compared to the case
in which they run only one node by cooperating with each
other. This cooperation is commonly observed as a form of
centralized mining pools. Of course, the variance of rewards
can decrease when players join the mining pools, which would
be another reason that many players join these pools. However,
even though there are decentralized pools (e.g., P2Pool [121]
and SMARTPOOL [122]) in which players can reduce the
variance of rewards and run a full node, most players do not
join the decentralized pools due to the cost of running a full
node5.

Meanwhile, for the above reason, the systems can satisfy
NS-δ. Finally, ED-(ε, δ) cannot be satisfied in PoW systems.
Firstly, Eq. (9) is a strictly increasing function of αni for a
proper value of

∑
nj
αnj and does not satisfy Eq. (6). Thus,

according to Thm. IV.2, ED-(ε, δ) cannot be satisfied for the
proper range of

∑
nj
αnj . In addition, for a significantly large

value of
∑
nj
αnj , because all nodes suffer a loss regardless of

their resource power, all of them would reduce their resource

5One can see that the percentage of resource power possessed by the
decentralized pools is significantly small.
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Table II
CLASSIFICATION OF TOP 100 COINS (SEP. 11, 2018)

Consensus Coins Count

PoW

Bitcoin (1) [1] , Ethereum (2) [12] , Bitcoin Cash (4) [31] , Litecoin (7) [32] , Monero (9) [33] , Dash (10) [34] , IOTA
(11) [35] , Ethereum Classic (13) [36] , Dogecoin (18) [37] , Zcash (19) [38] , Bytecoin (21) [39] , Bitcoin Gold (22) [40]
, Decred (25) [41] , Bitcoin Diamond (26) [42] , DigiByte (28) [43] , Siacoin (33) [44] , Verge (34) [45] , Metaverse
ETP (35) [46] , Bytom (36) [47] , MOAC (43) [48] , Horizen (47) [49] , MonaCoin (51) [50] , Bitcoin Private (52) [51] ,
ZCoin (56) [52] , Syscoin (60) [53] , Electroneum (61) [54] , Groestlcoin (64) [55] , Bitcoin Interest (67) [56] , Vertcoin
(70) [57] , Ravencoin (71) [58] , Namecoin (72) [59] , BridgeCoin (74) [60] , SmartCash (75) [61] , Ubiq (77) [62] ,
DigitalNote (82) [63] , ZClassic (83) [64] , Burst (85) [65] , Primecoin (86) [66] , Litecoin Cash (90) [67] , Unobtanium
(91) [68] , Electra (92) [69] , Pura (96) [70] , Viacoin (97) [71] , Bitcore (100) [72]

44

PoS

Cardano (8) [73] , Tezos (15) [74] , Qtum (24) [75] , Nano (29) [76] , Waves (31) [77] , Stratis (37) [78] , Cryptonex
(38) [79] , Ardor (42) [80] , Wanchain (44) [81] , Nxt (50) [82] , PIVX (57) [83] , PRIZM (63) [84] , WhiteCoin (76) [85]
, Blocknet (79) [86] , Particl (80) [87] , Neblio (81) [88] , BitBay (87) [89] , GCR (89) [90] , NIX (93) [91] , SaluS
(94) [92] , LEO (98) [93] , ION (99) [94]

22

DPoS EOS (5) [95] , TRON (12) [96] , Lisk (20) [97] , BitShare (27) [98] , Steem (32) [99] , GXChain (48) [100] , Ark
(49) [101] , WaykiChain (68) [102] , Achain (84) [103] , Asch (88) [104] , Steem Dollars (95) [99] 11

Others
Stellar (6) [105] , NEM (16) [106] , ICON (30) [107] , Komodo (39) [108] , ReddCoin (40) [25] , Hshare (41) [109] ,
Nebulas (53) [110] , Emercoin (54) [111] , Elastos (55) [112] , Nexus (58) [113] , Byteball Bytes (59) [114] , Factom
(62) [115] , Skycoin (69) [116] , Nexty (66) [117] , Peercoin (73) [118]

15

Permissioned XRP (3) [26], NEO (14) [27] , VeChain (17) [28] , Ontology (23) [29] , GoChain (65) [30] 5
Token Huobi Token (45) 1

Not working BitcoinDark (46) , Boscoin (78) 2

Table III
ANALYSIS OF INCENTIVE SYSTEMS

Coin name Con 1 Con 2 Con 3 Con 4 Ndpos Sybil cost
PoW & PoS coins

All PoW&PoS† − 7
IOTA − 7

BridgeCoin − 7
Nano − 7

Cardano − 7

DPoS coins
EOS ? 21 s

TRON ? 27 s
Lisk 101 7

BitShare 27 7
Steem ? 20 s

GXChain 21 7
Ark 51 7

WaykiChain 11 7
Achain 99 7
Asch 91 7

Steem Dollars ? 20 s

† = except for IOTA, BridgeCoin, Cardano, and Nano; = fully satisfies
the condition; = partially satisfies the condition; = does not satisfy the
condition; s= has partial Sybil costs; 7= does not have Sybil costs;

power. Note that this behavior does not affect the power
distribution, which represents relative resource power. As a
result, PoW systems with the incentive system defined by
Eq. (9) cannot satisfy ED-(ε, δ). Through this analysis of
PoW systems, we expect that the current PoW systems
neither have sufficient independent players nor an even
power distribution among players.

Meanwhile, IOTA and Bridgecoin, which do not have any
incentive, satisfy both NS-δ and ED-(ε, δ) as a trivial case
because rational players would not run nodes.

2) Proof of Stake: In PoS systems, nodes receive block re-
wards in proportion to their stake. Therefore, in these systems,

we can express the utility Uni as follows:

Uni(αni , ᾱ−ni) = Br ·
αni∑
j αnj

− c if αni ≥ Sb (10)

Br and c in Eq. (10) represent the block reward that a node
can earn for a time unit and the cost required to run one node,
respectively. Sb indicates the least amount of stakes required to
run one node. Therefore, Eq. (10) implies that only nodes with
stakes above Sb can be run and earn a reward in proportion
to their stake fraction.

Similar to PoW systems, the systems just satisfy GR-m for
some m (i.e., partially satisfy GR-m) because there exists a
large value of

∑
αnj such that Uni(αni , ᾱ−ni) < 0 in PoS

systems. In addition, it is more profitable for multiple players
to run one node when compared to running each different
node. For example, if a player has a stake below Sb, he cannot
earn a reward by running nodes in the consensus protocol.
However, he can receive a reward by delegating its stake to
others. In addition, if multiple players run only one node, they
can reduce the cost required to run nodes. Therefore, PoS
systems do not satisfy ND-m. These behaviors are observed
through PoS pools [123], [124] or leased PoS [125] in practice.
This fact also implies that it is less profitable for one player
to run multiple nodes than to run one node; thus, PoS systems
satisfy NS-δ. Finally, the system cannot satisfy ED-(ε, δ). To
describe the reason, we should consider when Br is a constant
and when it is not, where PIVX [83] belongs to the latter. If
Br is a constant, the utility Uni is a strictly increasing function
of αni . Because Eq. (6) is not met, according to Thm. IV.2,
this case cannot satisfy ED-(ε, δ). Meanwhile, in the PIVX
system, Br is a decreasing function of

∑
nj
αnj due to the

seesaw effect [83]. Therefore, for a large value of
∑
nj
αnj ,

nodes earn less rewards compared to the case when
∑
nj
αnj

is small. In this case, there is an equilibrium where all nodes
reduce their resource power for higher profits, and in addition,
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a strategy that allows a state to reach the equilibrium exists.
This does not change the power distribution among nodes,
which is only related to the relative resource power of the
nodes. As a result, PIVX does not satisfy ED-(ε, δ) as well.

As shown in Table III, the results are similar to those
for PoW coins. Therefore, like in PoW coins, PoS coins
would have a restricted number of independent players
and a biased power distribution among them. Note that we
excluded Wanchain in this analysis because the specifications
of its PoS protocol have not been provided yet at the time
of writing [126]. Moreover, similar to IOTA and BridgeCoin,
Nano does not provide incentives to run nodes. Therefore,
the result of Nano is the same with IOTA and BridgeCoin.
In addition, Cardano is planning to implement an incentive
system different from that of usual PoS systems [6]. The
system has a goal that there should be k nodes with similar
resource power for given k. In fact, the incentive system has
a similar property to DPoS systems, which will be described
in the following section.

3) Delegated Proof of Stake: DPoS systems are signifi-
cantly different from PoW and PoS systems. Unlike these
systems, DPoS systems do not give nodes block rewards
in proportion to their resource power. Instead, in the DPoS
system, stake holders elect block generators through a vot-
ing process, where the vote power is in proportion to the
stake owned by stake holders (i.e., voters). Then the block
generators have the same opportunity to generate blocks and
earn the same block rewards. Therefore, when we arrange
ᾱ = {αni | 1 ≤ i ≤ n} in descending order, we can express
the utility Uni in DPoS systems as follows:

Uni(αni , ᾱ−ni) =

{
Br − c if i ≤ Ndpos

−c else
, (11)

where Br is a block reward that a node can earn on average for
a time unit, and c represents the cost associated with running
one node. In addition, Ndpos is a constant number given in the
DPoS system. Eq. (11) means that only Ndpos nodes with many
votes can earn rewards by generating blocks. In fact, not all
DPoS systems have the same incentive scheme with Eq. (11).
For example, EOS with Ndpos = 21 gives small rewards to
nodes ranked within 100th place [127]. In addition, Steem
with Ndpos = 20 randomly chooses one node, ranked outside
the 20th place, as a block generator [99]. Thus, the system
also gives small rewards to nodes ranked outside 20th place.
In WaykiChain, its incentive system is significantly different
from the typical incentive scheme used in DPoS systems
because nodes with small votes can also earn non-negligible
rewards [128]. Even though incentive systems different from
Eq. (11) exist, we describe the analysis result of DPoS coins
by focusing on Eq. (11) because their properties are similar.

First, the DPoS system attracts players who can obtain high
voting power because it provides them with the block reward.
Meanwhile, rational players who are unable to obtain high
voting power cannot earn any reward. Therefore, the system
partially satisfies GR-m. Moreover, it is rational for multiple

players with small stakes to delegate their stakes to one player
by voting for him, and this is why this system is called a
delegated PoS system. Meanwhile, rational players with high
stakes would run their own nodes by voting for themselves.
For example, if two players have sufficiently high stakes and
run two nodes, they can earn a total value of 2(Br − c) as
net profit. However, when they run only one node, they earn
only Br − c. As a result, it is rational only for players with
small stakes to delegate all their resource power to others, and
ND-m is partially satisfied.

Next, we consider NS-δ. As described above, a player with
small stakes would not run multiple nodes, but instead delegate
its stakes to others. However, for a player with high stakes,
this is divided into two cases: when weak identity management
exists or not. Weak identity management indicates that nodes
should reveal their pseudo-identity such as a public URL
or social IDs. Firstly, in the latter case, the player with
high stakes can earn a higher profit by running multiple
nodes because there is no Sybil cost. Therefore, the DPoS
system in which identity management does not exist partially
satisfies NS-δ because only players with high stakes would run
multiple nodes. Meanwhile, when the system has weak identity
management, voters can partially recognize whether different
nodes are run by the same player. Therefore, the voters can
avoid voting for these multiple nodes run by the same player
because they may want to achieve good decentralization in
the system and recognize that the system can be centralized
towards a few players when they vote for the nodes controlled
by the same player. This fact makes it not more profitable
for one player to run multiple nodes than to run one node
(i.e., Sybil costs exist), and these DPoS systems satisfy NS-δ.
Note that because the identity management is not perfect, a
rich player can still run multiple nodes by creating multiple
pseudo-identities. Thus, strictly speaking, systems with weak
identity management do not still fully satisfy NS-δ. However,
because it is certainly more expensive for the rich player to
run multiple nodes in systems with weak identity management
compared to systems without identity management, we mark
such systems with ? for NS-δ in Table III, to distinguish them
from systems with no identity management.

Currently, EOS, TRON, Steem, and Steem Dollars have
weak identity management. EOS and TRON propose some
requirements for a player to register as a delegate, even though
the requirements are not official [129]–[131]. The require-
ments include a public website, technical specifications, and
team members, which can be regarded as pseudo-identities.
Steem and Steem Dollars provide the information for activities
in Steemit [132]–[134]. Note that Steem and Steem Dollars are
indeed transacted under the same consensus protocol.

Finally, we examine whether the DPoS system satisfies ED-
(ε, δ). To this end, we consider two cases: when a delegate
shares the block reward with voters (e.g., TRON [135] and
Lisk [136]) and when not sharing (e.g., EOS6). In the former

6A debate exists as to whether delegates should share their rewards with
voters or not. Currently, some delegates have announced that they will share
the rewards [137], [138].
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case, if a delegator receives V votes, the voters who voted for
the delegator can earn reward Br

V −f per vote in general, where
f represents a fee per vote paid to the delegator. Here, note that
the larger V is, the smaller is reward the voters earn. Therefore,
when voters are biased toward a delegator, some voters could
move their vote to other delegators for higher profits. In the
latter case, delegators would increase their effective power by
voting for themselves with more stakes to maintain or increase
their ranking, and Eq. (6) is met in the DPoS system. This
allows of a more even power distribution among the delegators.
Therefore, in the two cases, the power distribution among
delegators can converge to an even distribution. However, the
wealth gap between nodes obtaining small voting power and
nodes obtaining high voting power would increase, implying
that the probability for poor nodes to generate blocks gradually
becomes smaller. Consequently, the DPoS system partially
satisfies ED-(ε, δ).

Table III represents the analysis result for DPoS coins
according to the four conditions. DPoS systems may poten-
tially ensure the even power distribution among a limited
number of players when weak identity management exists.
However, the system has a limited number of players
running nodes in the consensus protocol, which implies
that they cannot have good decentralization.

VII. EMPIRICAL STUDY

In this section, we extensively collected and quantitatively
analyzed the data for PoW, PoS, and DPoS coins not only
to measure how much they are currently centralized but
also to validate the protocol analysis result and four condi-
tions. Through this study, we empirically observed rational
behaviors, such as delegation of resources to a few players
and running multiple nodes, which eventually hinder the full
decentralization.

A. Methodology

We considered the past 10,000 blocks before Oct. 15,
2018, for PoW and PoS systems and the past 100,000 blocks
before Oct. 15, 2018, for DPoS systems, because some DPoS
systems do not renew the list of block generators within
10,000 blocks. We parsed addresses of block generators from
each blockchain explorer for 68 coins. Because IOTA and
Nano are based on DAG technology instead of blockchain
technology, the analysis of these two systems will be presented
in Section VII-B3.

We determined the number NBAi of blocks generated by
each address Ai, where the set of addresses is denoted by A.
Then we constructed a dataset NB = {NBAi |Ai ∈ A} and
rearranged NB and A in descending order of NBAi . Then
we analyzed the dataset using three metrics, total number of
addresses (|A|), Gini coefficient, and entropy (H), where the
Gini coefficient is the most commonly used term to measure
the wealth distribution in economics. Moreover, in terms
of security in blockchain systems, it would be meaningful
to analyze how evenly not only the entire power but also
50% and 33% power are distributed because a player who

possesses above 50% or 33% power can execute attacks as
described in Section II. Therefore, we also measure the level
of decentralization for 50% and 33% power in systems using
the three metrics. To do this, we first define subset Ax of the
address set A and subset NBx of the data set NB as follows:

Ax =
{
Ai ∈ A

∣∣∣ ∑i−1
j=1NBAi∑
Ai∈ANBAi

< x
}
,

NBx = {NBAi |Ai ∈ Ax},

where 0 ≤ x ≤ 1. Here, note that if x is 0, the two sets are
empty, and if x is 1, they are equal to A and NB, respectively.
The Gini coefficient and entropy (H) are then defined as:

Gini(NBx) =

∑
Ai,Aj∈Ax |NBAi −NBAj |

2|A|
∑
A∈Ax NBAi

,

H(NBx) = −
∑

Ai∈Ax

NBAi∑
Ai∈Ax NBAi

log2

( NBAi∑
Ai∈Ax NBAi

)
.

The Gini coefficient measures the spread of the data set NBx.
If the deviation of NBx is small, its value is close to 0.
Otherwise, the coefficient is close to 1. The entropy depends
on both |Ax| and Gini. As |Ax| gets larger and the smaller
the Gini coefficient, the entropy is larger. Therefore, entropy
implicitly presents the level of decentralization, and large en-
tropy implies a high level of decentralization. In fact, because a
player can have multiple addresses, the measured values may
not accurately represent the actual level of decentralization.
However, since entropy is a concave function of the relative
ratio (i.e., NBAi∑

Ai∈Ax
NBAi

) of NBAi to the total number of
generated blocks, the results show an upper bound of the
current level of decentralization. Therefore, if the measured
values of entropy are low, the current systems do not have
good decentralization.

B. Data Analysis

1) Quantitatively analysis: Tables IV, V, and VI represent
the results of PoW, PoS, and DPoS coins, respectively. Coins
such as Monero [33], Bytecoin (21) [39], Electroneum [54],
DigitalNote [63], and PIVX [83] include stealth or anonymous
addresses that cannot be traced. Therefore, we excluded them
in this data analysis. In other words, we conduct data analysis
for 39 PoW, 19 PoS, and 10 DPoS coins in this section. In
addition, the datasets for certain coins have too much noise
to find out the actual level of decentralization, because they
include short-lived addresses, which are used only for a short
time and discarded later. We colored these coins in gray in
the tables. Moreover, in the case of Cardano and WaykiChain,
only trusted nodes are allowed to participate in the protocol at
the time of writing, because they have not implemented their
public consensus protocols yet [73], [139], [140]. In the tables,
we assigned a color of blue to these coins. We do not consider
these colored coins when interpreting the results below.

Firstly, one can see that there are not sufficient block gen-
erators in PoW, PoS, and DPoS coins. In particular, |A 1

2 | and
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Table IV
POW COINS

100 % 50% 33%
Coin name |A| Gini H |A

1
2 | Gini

1
2 H

1
2 |A

1
3 | Gini

1
3 H

1
3

Bitcoin 62 0.8192 3.89 4 0.1143 1.98 3 0.1103 1.57
Ethereum 65 0.8634 3.38 3 0.1402 1.53 2 0.0415 1.00

Bitcoin Cash 15 0.5729 3.06 3 0.2572 1.51 2 0.0859 0.12
Litecoin 35 0.8094 3.10 3 0.0176 1.58 2 0.0146 1.00

Dash 109 0.9005 3.79 4 0.2050 1.90 2 0.0770 0.98
Ethereum Classic 83 0.8916 3.17 2 0.1538 0.93 1 0 0

Dogecoin 400 0.8686 4.95 4 0.2123 1.89 2 0.1098 0.96
Zcash 75 0.8932 3.36 3 0.0615 1.52 2 0.0546 0.15

Bitcoin Gold 29 0.8585 2.36 1 0 0 1 0 0
Decred 17 0.7751 2.33 2 0.1471 0.35 2 0.1471 0.35

Bitcoin Diamond 16 0.7401 2.44 2 0.0707 0.99 2 0.0707 0.99
DigiByte 125 0.7791 5.09 7 0.2724 2.63 4 0.1879 1.90
Siacoin 1406 0.8582 3.02 2 0.1551 0.98 2 0.1551 0.98
Verge 82 0.7261 4.92 8 0.1762 3.03 5 0.0820 2.46

Metaverse ETP 36 0.7964 3.25 3 0.2914 1.49 2 0.1927 0.97
Bytom 12 0.7978 1.54 1 0 0 1 0 0
MOAC 28 0.7067 3.46 3 0.2330 1.53 2 0.1615 0.98
Horizen 96 0.9109 3.39 3 0.0882 1.56 2 0.0189 1.00

MonaCoin 44 0.8185 3.39 3 0.1373 1.56 2 0.0920 0.99
Bitcoin Private 135 0.8557 4.48 5 0.1260 2.28 3 0.0766 1.57

Zcoin 361 0.9562 1.75 1 0 0 1 0 0
Syscoin 5979 0.2529 10.37 1978 0.5055 6.78 644 0.7571 3.61

Groestlcoin 10 0.4969 2.67 3 0.3408 1.47 2 0.4110 0.45
Bitcoin Interest 19 0.7267 2.66 2 0.3109 0.70 1 0 0

Vertcoin 60 0.8390 3.61 3 0.2639 1.40 2 0.2064 0.87
Ravencoin 71 0.8014 4.12 4 0.2057 1.90 2 0.0488 0.99
Namecoin 3390 0.5693 8.00 49 0.8613 2.52 3 0.1913 1.48

BridgeCoin 1 0 0 1 0 0 1 0 0
SmartCash 7 0.6885 1.47 1 0 0 1 0 0

Ubiq 34 0.8440 2.58 1 0 0 1 0 0
Zclassic 41 0.7762 3.54 3 0.2394 1.43 2 0.0899 0.98

Burst 143 0.9054 3.45 2 0.2473 0.82 1 0 0
Prime 7477 0.2525 10.46 2476 0.5048 6.63 809 0.7565 3.22

Litecoin Cash 33 0.6788 3.78 5 0.0711 2.31 3 0.0557 1.58
Unobtanium 30 0.9463 0.89 1 0 0 1 0 0

Electra 1268 0.6608 8.34 46 0.5262 4.87 12 0.2622 3.53
Pura 19 0.6521 3.08 3 0.0778 1.58 2 0.0905 0.99

Viacoin 33 0.9141 1.78 1 0 0 1 0 0
Bitcore 116 0.9337 3.11 2 0.0956 0.97 2 0.0956 0.97

|A 1
3 | in PoW and PoS are quite small. However, PoS systems

have generally more block generators than PoW systems. This
may be because the pool concept is more common in PoW
systems. Indeed, most PoS systems are currently in an early
stage, and some of them do not have staking pools yet. For
example, Qtum does not have staking pools yet at the time of
writing and has a relatively large number of block generators
compared to others.7 Certainly, this fact allows the level of
decentralization in Qtum to increase. However, we cannot
assure that this situation will continue. There have already
been some requests for pools and intention to run a business
for Qtum staking pools [141]–[144]. When considering this
fact, we expect that staking pools would become more popular
in PoS systems. Note that Tezos and Waves, already allowing
of delegation of stakes, have a smaller number of block
generators. PoW protocols also did not originally have a pool
concept. However, mining pools have become significantly

7Note that the value of |A| in Table V does not accurately represent the
number of block generators because a player can create multiple addresses.

Table V
POS COINS

100 % 50% 33%
Coin name |A| Gini H |A

1
2 | Gini

1
2 H

1
2 |A

1
3 | Gini

1
3 H

1
3

Cardano 7 0.0039 2.81 3 0.0083 2.11 2 0.0111 1.50
Tezos 245 0.8391 5.54 9 0.1061 3.13 6 0.1168 2.55
Qtum 1853 0.7404 8.07 32 0.5923 4.12 7 0.2512 2.69
Waves 110 0.8606 4.24 4 0.1545 1.93 3 0.1628 1.51
Stratis 527 0.8113 6.78 20 0.2626 4.15 10 0.2007 3.23

Cryptonex 122 0.9231 3.30 4 0.0103 2.00 3 0.0078 1.58
Ardor 247 0.8623 4.91 8 0.5376 2.20 6 0.4554 1.95
Nxt 165 0.9150 3.30 2 0.0326 1.00 2 0.0326 1.00

PRIZM 82 0.8672 3.68 4 0.0053 2.00 3 0.0022 1.58
Whitecoin 239 0.6273 6.84 32 0.2954 4.75 15 0.2740 3.71
Blocknet 584 0.7965 6.54 10 0.3891 2.96 4 0.1778 1.92

Particl 1801 0.5989 9.48 141 0.4436 6.56 48 0.3713 5.21
Neblio 1177 0.8258 6.00 5 0.4523 1.74 2 0.3123 0.70
Bitbay 313 0.7839 6.02 9 0.3075 2.94 4 0.0890 1.97
GCR 263 0.8192 5.84 11 0.2515 3.43 6 0.1779 2.68
NIX 1130 0.4520 9.62 255 0.2224 7.86 135 0.2180 6.96

SaluS 27 0.6974 3.41 4 0.1577 1.97 3 0.1342 1.56
Leocoin 879 0.5988 8.72 106 0.3639 6.33 44 0.3268 5.16

ION 287 0.8998 4.24 2 0.0335 1.00 2 0.0335 1.00

Table VI
DPOS COINS

100 % 50% 33%
Coin name |A| Gini H |A

1
2 | Gini

1
2 H

1
2 |A

1
3 | Gini

1
3 H

1
3

EOS 22 0.0447 4.43 11 0.0002 3.46 7 0.0003 2.81
TRON 28 0.0358 4.79 14 0.0009 3.81 9 0.0008 3.17
Lisk 101 0.0023 6.66 51 0.0011 5.67 34 0.0010 5.09

BitShare 27 0.0009 4.75 14 0.0007 3.81 9 0.0003 3.17
Steem 140 0.8324 4.68 11 0.0002 3.46 7 0.0002 2.81

GXChain 21 0.0328 4.39 10 0.0016 3.32 7 0.0013 2.81
Ark 52 0.0200 5.69 25 0.0005 4.64 16 0.0003 4.00

WaykiChain 11 0.1688 3.27 5 0.0021 2.32 4 0.0022 2.00
Achain 99 0.0018 6.63 49 0.0009 5.61 32 0.0008 5.00
Asch 92 0.0769 6.50 42 0.0267 5.39 27 0.0184 4.75

popular, and most miners currently join mining pools. As a
special case, BridgeCoin, which does not satisfy GR-m at
all, has only one player. This implies that it cannot attract
the participation of players. For the case of DPoS systems,
they (except for Steem) have |A| similar to Ndpos. The
reason why |A| in Steem is relatively large when compared to
Ndpos = 20 is that one block generator is randomly chosen
among all nodes as described in Section VI-B3. However, in
all DPoS systems, |A 1

2 | and |A 1
3 | are close to Ndpos

2 and Ndpos

3 ,
respectively. This indicates that only a small number of players
have been block generators even though block generators are
frequently elected, implying that the barriers to becoming a
block generator are quite high.

Next, we describe the power distribution among nodes. As
shown in Tables IV and V, PoW and PoS coins certainly have a
high value of Gini, which implies that they have a significantly
biased power distribution. Meanwhile, DPoS coins, except for
Steem, have a low value of Gini and all DPoS coins have low
values of Gini

1
2 and Gini

1
3 . This is because the elected block

generators have the same opportunity to generate blocks in
DPoS systems. Again, note that in Steem, one block generator
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Table VII
RESOURCE POWER IN DPOS COINS

Delegates 100 % 50% 33%
Coin name |N D|GiniD HD |N | Gini H |N

1
2 |Gini

1
2 H

1
2 |N

1
3 |Gini

1
3 H

1
3

EOS 21 0.048 4.39 439 0.846 6.47 28 0.063 4.80 18 0.047 4.16
TRON 27 0.198 4.54 165 0.849 4.84 12 0.258 3.29 6 0.324 2.23
Lisk 101 0.031 6.65 1179 0.907 6.99 52 0.013 5.70 35 0.011 5.13

BitShare 27 0.070 4.74 140 0.550 6.35 21 0.051 4.34 14 0.038 3.80
Steem 20 0.052 4.32 150 0.588 6.37 23 0.061 4.52 15 0.042 3.90

GXChain 21 0.000 4.39 − − − − − − − − −
Ark 51 0.053 5.66 196 0.734 5.86 26 0.054 4.69 17 0.055 4.08

WaykiChain − − − − − − − − − − − −
Achain − − − − − − − − − − − −
Asch 91 0.041 6.49 633 0.745 7.63 71 0.028 6.15 46 0.032 5.52

is randomly chosen among all nodes, which makes Gini for
all block generators in Steem high.

In fact, unlike Table IV and V, Table VI does not repre-
sent the resource power of nodes, where the resource power
indicates the amount of stakes delegated to each node, be-
cause the probability to generate blocks is not proportional
to the resource power in DPoS systems. Thus, to present the
distribution of resource power among nodes, we analyze the
instantaneous amount of stakes delegated to each node through
block explorers. Table VII represents the distribution of stakes
voted for nodes as of Nov. 19, 2018, where we mark with “−”
the values that cannot be determined in the block explorer
of the corresponding coin. In particular, the voting process
in WaykiChain has not been implemented yet at the time of
writing [140].

In Table VII, |N x|, Ginix, and Hx represent the size
of N x, Gini coefficient, and entropy for N x, respectively.
The Delegates, 100%, 50%, and 33% columns present the
number of nodes, Gini coefficient, and entropy of delegates
(ND), nodes whose total resource power is 100% (N ), 50%
(N 1

2 ), and 33% (N 1
3 ), respectively. GiniD is low in all DPoS

systems, indicating that delegates possess similar resource
power. In Section VI-B3, we explained that DPoS systems
can converge in probability to the state where delegates
have similar resource power. Here, the reason why GiniD of
TRON is relatively high compared to the others is that the
node [145] operated by the TRON foundation is ranked in the
first place by a relatively large margin. However, we observe
that delegates, except for this node, possess almost the same
resource power in TRON. On the other hand, the value of Gini
for all nodes is high, implying a large gap between the rich
and poor. Moreover, Table VII shows that the resource power
is significantly biased toward the delegates.

As a result, the quantitative data analysis validates our
theory and the analysis result of the incentive systems in
Section VI.

2) Multiple nodes run by the same player: In DPoS systems
that do not even have weak identity management, a rich player
can easily earn a higher profit by running multiple nodes. How-
ever, because they do not have any real identity management,
it can be difficult to detect this rational behavior in practice.
Nevertheless, we show that one player runs multiple nodes in

several coins: GXChain, Ark, and Asch.
GXChain. GXChain has 21 delegates in the consensus
protocol. We can see the activities of delegates via the
official block explorer of GXChain [146], including their
creator. As of writing, we observed that two players with
nathan and opengate accounts run 16 and 5 active del-
egates, respectively. More specifically, nathan account cre-
ated the delegates aaron, caitlin, kairos, sakura,

taffy, miner1∼11, and opengate account created the
delegates hrrs, dennis1, david12, marks-lee, and
robin-red. This fact implies that the system is currently
controlled by at most only two players.
Ark. We discover that two nodes, biz_classic

and biz_private, are run by the same player.
Firstly, we can see that a player who has address
AHsuUuhTNCGCbnPNkwJbeH27E4sDdcnmgp votes for
biz_classic, and the delegate biz_classic share rewards
with the voter by issuing transactions. Because transactions
issued in the Ark system include some messages, we were
able to observe the following two messages sent from
biz_classic to the voter [147], [148].

1) You meet the minimum for biz_private. Switch for
higher payouts.

2) FYI: Change your vote to biz_private for higher
payouts :)

Therefore, we can speculate that biz_classic and
biz_private are owned by the same player.
Asch. There are 87 active delegates, and we were able to find
30 and 50 delegates with names such as asch_team_i and at

i, respectively, where i is replaced by a number. For example,
there exist delegate nodes with the names asch_team_1 or
at5. Even though these names are quite similar, this is not
enough to suspect that these nodes are controlled by the same
player. To determine whether the 80 nodes are owned by one
player, we investigated their activities.

Firstly, we determine when they became delegates. Based
on the transaction history, we can observe that the nodes
named asch_team_1∼5 have simultaneously participated in
the consensus protocol as delegates since Sep. 11, 2017.
Moreover, nodes named asch_team_6∼15 and those named
asch_team_16∼35 simultaneously became delegates on
Apr. 11, 2018, and Jun. 11, 2018, respectively. In fact,
asch_team_31∼35 among these nodes are inactive as of this
writing (Oct. 2018). In addition, all 50 nodes named at i have
become delegators since Jul. 6, 2018 at the same time.

Secondly, all these nodes received 100 XAS (i.e., a
unit of Asch coin) from an address just before they
became delegates. Even the address, which sent 100
XAS to asch_team_1∼5, is the same, and addresses for
asch_team_6∼15 and asch_team_16∼34 are also the
same, respectively. Furthermore, asch_team_35 and all
nodes named at i received 100 XAS from the same ad-
dress. Finally, these 80 nodes sent currencies to the ad-
dress GADQ2bozmxjBfYHDQx3uwtpwXmdhafUdkN almost at
the same time on Aug. 20, 2018. As a result, from these
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evidences, we speculate that the 80 delegate nodes are run
by the same player (or organization).

Summary. In these systems, we were able to observe that one
player runs multiple nodes for a higher profit. In particular,
GXChain and Asch systems seem to be controlled by only
two players and one player, respectively, implying a severely
low level of decentralization. In summary, even though DPoS
systems can achieve an even power distribution among part
of nodes, the even power distribution among nodes does not
translate to the players, which implies that the system has a
lower level of decentralization than expected.

3) DAG: In this section, we describe the analysis result
of IOTA and Nano, which adopt DAG. In IOTA, transaction
issuers should validate their transactions by themselves, and
currently, there are not enough issuers to stably run IOTA.
Therefore, to solve this problem, the IOTA foundation controls
the system as a central authority, which implies that IOTA
has only one player [149], [150]. This result is in agreement
with our protocol analysis in respect that many players do
not exist in IOTA. Meanwhile, at the time of writing, even
though Nano does not have enough players, there are relatively
many players compared to IOTA. Specifically, there are 64
players in Nano, and two players possess approximately 45%
power, indicating a significantly biased power distribution.
This fact is derived referring to the data obtained from a node
monitoring website [151]. We see that this situation of Nano is
due to incentives outside of the blockchain system. Indeed, we
observe that at least 37 players get incentives outside of the
blockchain system by participating in the system, and these
players possess approximately 80% power.8 For example,
BrainBlocks [152], which provides a platform related to Nano,
is incentivized to run nodes in the Nano system for its business,
and currently it is a rich player in the Nano system. As a result,
in Nano, most players participate in the consensus protocol to
receive external incentives, and they possess most resource
power. We will discuss more about the external incentive in
Section VIII-A.

VIII. DISCUSSION

A. Debate on Incentive Systems

Recently, there was an interesting debate on incentive sys-
tems of Algorand [7], [23], [153]. Micali said that incentives
are the hardest thing to do and the existing incentivization has
led to poor decentralization. Our study supports this fact by
proving that it is impossible to design incentive systems in a
permissionless blockchain to reach good decentralization.

Then, can we create a permissionless blockchain to achieve
good decentralization without any incentive system? The case
where the incentive system does not exist represents Uni =
−c, where c is the cost associated with running one node. This
satisfies the second requirement of Def. IV.1 because NS-δ and
ED-(ε, δ) are met as a trivial case. Meanwhile, it cannot satisfy
the first two conditions, GR-m and ND-m. As examples, we

8We were not able to identify all such players because there are untraceable
players.

can consider BridgeCoin, IOTA, and Byteball, which do not
have an incentive system and have difficulty in attracting the
participation of many players. BridgeCoin has only one player
(refer to Table IV), and IOTA is also controlled by one player,
the IOTA foundation. Byteball is another system that adopts
DAG, and there are only four players. These examples show
that blockchain systems with no incentive cannot have enough
players.

However, our study considered only incentives inside the
system and not incentives outside the system. Therefore, if
there exist some incentives that players can get outside the
blockchain system, they can participate in the system. For
example, in Nano and Stellar, most players run nodes to get
external incentives [21], [154], [155]. Note that this fact does
not imply that these systems can reach good decentralization.
Indeed, both these systems have poor decentralization. In other
words, they do not have sufficiently many players and have a
biased power distribution. Besides, through these cases, we can
empirically see that organizations related to the coin system
(e.g., the coin foundation or companies that do business with
the coin) control the blockchain system, which may deviate
from the philosophy of permissionless blockchains.

B. Relaxation of Conditions from Consensus Protocol

We proved that an incentive system in permissionless
blockchains cannot simultaneously satisfy the four conditions.
Nevertheless, if there is a consensus protocol that relaxes
part of the four conditions, we can expect to be able to
design an incentive system to achieve good decentralization.
However, it seems to be quite difficult to design such con-
sensus protocols. Here, we explain the reason why the design
of consensus protocol relaxing the conditions is difficult by
considering two ways to design such protocols: 1) designing
non-outsourceable puzzles and 2) finding non-delegable or
non-divisible resources.
Non-outsourceable puzzles. There exist several studies on
the construction of non-outsourceable puzzles in PoW sys-
tems [156]–[159]. In those puzzles, if players outsource the
puzzles, their rewards can be stolen. Therefore, this risk can
cause a pool manager to refrain from outsourcing its work to
pool miners. For example, in the proposed puzzles, if a pool
manager outsources the puzzles, when a pool miner finds a
valid block, he does not submit the valid block to the pool
manager and can steal the block reward.

However, these puzzles still allow other types of mining
pools, such as cloud mining [160], where individual miners
buy hash rate from the service provider, and the provider
directly solves PoW puzzles with computing resources gath-
ered by spending the received funds. Miller et al. [158]
claimed that they can prevent cloud mining as well, because
the cloud service provider can steal block rewards in their
protocol. However, with or without non-outsourceable puzzle,
the provider can always steal the block reward without any
clear evidence. Despite this risk, cloud mining has settled
in types of popular mining [161] because cloud miners can
reduce the cost of running hardware and nodes. Indeed, there

17



exist several popular cloud mining services [162] such as
Genesis Mining [163], HashNest [164] operated by BIT-
MAIN [165], and Bitcoin.com [166]. This situation indicates
that the delegation of resource power to part of players would
still occur even in non-outsourceable PoW protocols [156]–
[159], if profitable. Moreover, the more trust that the company
providing the cloud mining service gets from users, the more
the cloud service would become popular.

Even in the case of PoS coins, we can empirically see that
players would delegate their resources to others for higher
profits. One way is to delegate resources through investment
in service providers, similar to cloud mining in PoW systems,
and it seems to be difficult to prevent this if such a business
is profitable. As a result, it would be difficult to make
the delegating behaviors disappear by simply modifying the
consensus protocol.

Non-delegable/non-divisible resources. Another way to
relax the four conditions is to find non-delegable or non-
divisible resources. These resources make it impossible for
players to delegate their resources to others and run multiple
nodes, respectively. Therefore, for each resource, it would be
sufficient for the incentive systems to satisfy conditions except
for ND-m and NS-δ, to achieve full decentralization.

We can consider reputation as one of such resources. Cur-
rently, GoChain uses proof of reputation (PoR) as a consensus
algorithm in which nodes should have a high reputation score
to participate. In this system, only the company can be a
validator, and they believe that PoR can achieve almost full
decentralization [30], [167]. Moreover, trust can be one of
the non-delegable and non-divisible resources. In the Stel-
lar system, nodes have a trust-based relationship with each
other. Specifically, Stellar uses FBA as a consensus algorithm,
where nodes configure their quorum slice, which is a set of
dependable nodes during a consensus process, according to
their trust relation. In addition, Bahri et al. proposed proof
of trust (PoT), where more trusted nodes can easily solve
puzzles [168]. However, both reputation and trust are not
suitable for permissionless blockchains because players would
need to know real identities of others. Even though Stellar
is classified as a permissionless blockchain, for nodes to be
effective validators, they should reveal identities. As a result,
it remains an open question to answer as to whether we can
find non-delegable or non-divisible resources that are suitable
for permissionless blockchains.

IX. RELATED WORK

Attacks. Eyal et al. [17] proposed selfish mining, which an
attacker possessing over 33% computing power can execute
in PoW-based systems. They mentioned that this attack makes
rational miners join the attacker, eventually decreasing the
level of decentralization. Eyal [169] and Kwon et al. [170]
modeled a game between two pools. When considering block
withholding attacks, the game is equivalent to the prisoner’s
dilemma, and the attacks make rational miners leave min-
ing pools, and instead, directly run nodes in a consensus

protocol [169]. Contrary to this positive result, a fork after
withholding attack between two pools leads to a pool size
game where a larger pool can earn extra profits, and thus,
the Bitcoin system can be more centralized. Furthermore, two
existing works analyzed the Bitcoin system in a transaction-fee
regime where transaction fees in block rewards are not negli-
gible [171], [172]. They described that this regime incentivizes
large miner coalitions and make a system more centralized.

Analysis. Many papers have already examined centralization
in the Bitcoin system. First, Gervais et al. described centraliza-
tion of the Bitcoin system in terms of various aspects such as
services, mining, and incident resolution processes [2]. Miller
et al. observed a topology in the Bitcoin network and found
that about 2% of high-degree nodes acquire three quarters of
the mining power [173]. Moreover, Feld et al. analyzed the
Bitcoin network, focusing on its autonomous systems (ASes),
and showed that routable peers are concentrated only in a few
ASes [174]. Recently, Gencer et al. analyzed the Bitcoin and
Ethereum systems in terms of decentralization [4]. Kwon et
al. analyzed a game in which two PoW coins with compatible
mining algorithm exist [175]. They showed that a fickle mining
behavior between two coins can make the decentralization
level lower in the less-valued one of the two coins. In addition,
Kim et al. analyzed the Stellar system and concluded that the
system is significantly centralized [21].

Solutions. There are several works that address the is-
sue of poor decentralization in blockchain systems. Many
works [156]–[159] have proposed non-outsourceable puzzles
to prevent mining pools from being popular. However, they
cannot fully prevent the delegation as described in Sec-
tion VIII-B. As another solution, Luu et al. proposed an
efficient decentralized mining pool, SMARTPOOL, where
individual miners who directly run nodes in the consensus
protocol can consistently earn profits [122]. However, this
does not still incentivize players to run nodes directly (See
Section VI-B1). Another work [176] proposed a proof of
human-work requiring labor from players with CAPTCHA as
a human-work puzzle. Even though, as mentioned by [176],
the gap among labor abilities of people is relatively small by
their nature, rich players can hire more workers to solve more
puzzles. Finally, we are aware of a recent paper [6] in which
the authors addressed a similar problem to our paper. Brünjes
et al. propose a reward scheme, which makes a system reach
a state where k staking pools with similar resource power
exist. They assumed our third condition, NS-δ (i.e., all players
can run only one node), and thus, it seems difficult for their
incentive system to reach good decentralization in practice. As
described in previous sections, there is an incentive system that
satisfies only GR-m, ND-m, ED-(ε, δ).

X. CONCLUSION

Developers are facing difficulties in designing blockchain
systems to achieve good decentralization. Our study addresses
the question of why it is significantly difficult to design a
system to achieve good decentralization and proves that good
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decentralization is impossible when a system does not have
any Sybil costs. More specifically, we prove that when the
ratio between the resource power of the poorest and richest is
close to 0, the upper bound of the probability that systems
without a Sybil cost reach full decentralization is close to
0. This result indicates that if we cannot narrow the gap
between the rich and poor in the real world, the level of
decentralization in such systems cannot be high forever with
a high probability. Furthermore, we extensively analyzed and
conducted data analysis on the PoW, PoS, and DPoS coins in
top 100 coins. Based on this analysis, we observed rational
behaviors that degrade the level of decentralization in most
coins, which is in agreement with our theory. In addition, this
analysis quantitatively confirm that the current systems do not
exhibit good decentralization.
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APPENDIX A
PROOF OF THEOREM IV.2

Because the function Uni(αni , ᾱ−ni) is a strictly increas-
ing function of αni , the players would want to increase their
resource power and increase it at rate r per earned profit.
Therefore, the resource power αtni of node ni at time t
increases to αt+1

ni = αtni + r ·Rtni at time t+ 1.
Then we sequence nodes at time t such that αtni ≤ αtnj if

i < j. Thus, αtn1
and αtnM represent the smallest and largest

resource power at time t, respectively. In addition, we assume
that there exist M nodes (i.e., |N | = M ). At time t + 1, the
node ni’s resource power αt+1

ni and other node nj’s power
αt+1
nj would be αtni + r · f(ᾱt) and αtnj , respectively, if node
ni generates a block with probability Pr(Rtni = f(ᾱt) | ᾱt).
Then, we resequence M nodes at time t+ 1 such that αt+1

ni ≤
αt+1
nj if i < j. Here, for simplicity, we denote by βni (or βtni ) a

resource power fraction of node ni (at time t). In other words,

βni =
αni∑
ni
αni

and βtni =
αtni∑
nj
αtnj

. Moreover, f(ᾱt)∑
ni
αtni

is

denote by B.
Now, we show that limt→∞E[βtn1

] = limt→∞E[βtnM ].
First, the following is met.

βni
βnM

≤ Uni(αni , ᾱ−ni)

UnM (αnM , ᾱ−nM )
⇒ 1

βnM
≤
∑
i Uni(αni , ᾱ−ni)

UnM (αnM , ᾱ−nM )

⇔ UnM (αnM , ᾱ−nM ) ≤ βnM
∑
i

Uni(αni , ᾱ−ni), (12)

βni
βn1

≥ Uni(αni , ᾱ−ni)

Un1
(αn1

, ᾱ−n1)
⇒ 1

βn1

≥
∑
i Uni(αni , ᾱ−ni)

Un1
(αn1

, ᾱ−n1)

⇔ Un1
(αn1

, ᾱ−n1) ≥ βn1

∑
i

Uni(αni , ᾱ−ni). (13)

In Eqs. (12) and (13), the equal sign is true only if all nodes
have the same resource power fraction 1

M . Then we can derive
the below equations.

E[βt+1
ni |ᾱ

t] = Pr(Rtni = f(ᾱt) | ᾱt)
( r ·B

1 + r ·B

)
+∑

j

βtni Pr(Rtnj = f(ᾱt)|ᾱt)
1 + r ·B

≤
rUni(α

t
ni , ᾱ

t
−ni)

1 + r ·B
+

∑
j

βtnM Pr(Rtnj = f(ᾱt)|ᾱt)
1 + r ·B

≤
rβtnM

∑
j Unj (α

t
nj , ᾱ

t
−nj )

1 + r ·B
+

βtnM
1 + r ·B

= βtnM

Similarly, we also prove the following equation.

E[βt+1
ni |ᾱ

t] = Pr(Rtni = f(ᾱt)|ᾱt)
( r ·B

1 + r ·B

)
+ (14)∑

j

βtni Pr(Rtnj = f(ᾱt)|ᾱt)
1 + r ·B

≥
rUn1(αtn1

, ᾱt−n1
)

1 + r ·B
+ (15)

∑
j

βtn1
Pr(Rtnj = f(ᾱt)|ᾱt)

1 + r ·B
(16)

≥
rβtn1

∑
j Unj (α

t
nj , ᾱ

t
−nj )

1 + r ·B
+

βtn1

1 + r ·B
= βtn1

Therefore, the following is satisfied:

βtn1
≤ E[βt+1

ni |ᾱ
t] ≤ βtnM ,

where two equal signs are true if all nodes have the same
power fraction. Because E[βt+1

ni ] = E[E[βt+1
ni |ᾱ

t]], the below
equation is satisfied:

E[βtn1
] ≤ E[βt+1

ni ] ≤ E[βtnM ].

By the above equation, E[βtn1
] and E[βtnM ] are increasing

and decreasing functions of t, respectively, and converge
according to the monotone convergence theorem. Moreover, if
we assume that limt→∞E[βtn1

] = x < limt→∞E[βtnM ] = y,
E[βt+1

n1
|βtn1

= x] is greater than x for any t ≥ 0, and
this is a contradiction because E[βt+1

n1
|βtn1

= x] should be
x for a large value of t. Thus, x cannot be the limit, and
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limt→∞E[βtn1
] = limt→∞E[βtnM ]. In addition, because βtnM

is always not less than βtn1
,

lim
t→∞

E[βtn1
] = lim

t→∞
E[βtnM ]⇔ lim

t→∞
E[|βtnM − β

t
n1
|] = 0.

This fact implies that βtni converges in mean to 1
M . Because

convergence in mean implies convergence in probability,

lim
t→∞

Pr
[βtnM
βtn1

= 1
]

= 1.

As a result, Condition 4 is satisfied.
On the contrary, if

Uni(αni , ᾱ−ni)

αni
>
Unj (αnj , ᾱ−nj )

αnj

for any αni > αnj , the following is met: E[βtnM ] ≤ E[βt+1
nM ].

As a result, limt→∞E[βt+1
nM ] = 1, and βt+1

nM converges in prob-
ability to 1, where the case indicates extreme centralization.
Lastly, when

Uni(αni , ᾱ−ni)

αni
=
Unj (αnj , ᾱ−nj )

αnj

for any αni > αnj , the following is satisfied: E[βt+1
ni ] =

E[βtni ] = β0
ni . Therefore, if βtni converges in mean to

a value, the value would be β0
ni . However, the fact that

limt→∞E[βtni ] = β0
ni does not imply limt→∞E[|βtni −

β0
ni |] = 0, and indeed the following would be met:

limt→∞E[|βtni − β0
ni |] > 0. As a result, βtni does not

converge in probability to β0
ni , which implies that there is no

convergence in probability of βtni . These facts can be proven,
similar to the above proof.

APPENDIX B
PROOF OF THEOREM V.1

In this section, we prove Theorem V.1, and we introduce
notations ĒP = (EPpi)pi∈P and ĒP t = (EP tpi)pi∈Pt . In
addition, we assume that there is a mechanism M, which
stochastically makes a system (m, ε, δ)-decentralized. This
mechanism M can be represented with two functions Mt

1

andMt
2, which output the effective power distribution among

players and resource power distribution among nodes after t
time from when entering M, respectively. Formally, the two
functions are presented as Mt

1 : ΩEP × Ωα 7→ ΩEP and
Mt

2 : ΩEP × Ωα 7→ Ωα, where

ΩEP = {(EPpi)pi∈P |EPpi ∈ R+} and

Ωα = {(αni)ni∈N |αni ∈ R+}.

We also define Ωα(ĒP ) as follows:

Ωα(ĒP ) =

(αni)ni∈N

∣∣∣αni ∈ R+,
∑

ni∈Npi

αni = EPpi

 .

Moreover, note that, because a system has zero Sybil cost (i.e.,
C = 0), the following equation is met:

Mt
2(ĒP , ᾱ) =Mt

2(ĒP
′
, ᾱ) ∀ĒP 6= ĒP

′
. (17)

In addition, we define N(ĒP ) as
∞⋂
k=0

{
Mt

c2

(
ĒP , fEP→α(ĒP )

) ∣∣∣ t > k,

Mt
c1

(
ĒP , fEP→α(ĒP )

)
= ĒP

}
,

where the function fEP→α : ĒP 7→ ᾱ outputs the resource
power distribution among nodes in which each player runs
only one node (i.e., fEP→α(ĒP ) = (αni)ni∈N and αni =
EPpi for Npi = {ni}). Note that fEP→α(ĒP ) ∈ Ωα(ĒP ).
In the definition of N(ĒP ),Mt

c1(ĒP , ᾱ) andMt
c1(ĒP , ᾱ)

output an effective power distribution among players and a
resource power distribution among nodes, respectively, and
the outputs are the same as Mt

1(ĒP , ᾱ) and Mt
2(ĒP , ᾱ),

respectively, under the assumption that a mechanism M does
not change the resource power owned players.

The set of all (m, ε, δ)-decentralized distribution ĒP is de-
noted by S. The probability to reach (m, ε, δ)-decentralization
is

lim
t→∞

Pr
(
Mt

1(ĒP
0
, ᾱ0) ∈ S

)
.

Moreover, IĒP δ denotes a parameter that shows whether
the mechanism M can learn the information about ĒP δ =
(EPa)a≥δ , where IĒP δ = 1 (or 0) indicates that mechanism
M gets (or does not get) the information about ĒP δ . In other
words, when IĒP δ = 1, a system can know the effective
power distribution among players above the δ-th percentile.

Lemma B.1. IĒP δ = 1 if and only if N(ĒP )∩N(ĒP
′
) = ∅

for any ĒP δ 6= ĒP
′
δ , where ĒP δ ⊂ ĒP and ĒP ′δ ⊂ ĒP

′.

Proof. If IĒP δ = 1, there is a function Mt
2 such that, for

any ĒP and ĒP ′, which have ĒP δ and ĒP ′δ (6= ĒP δ),
respectively,

Mt
2(ĒP , ᾱ) 6=Mt

2(ĒP
′
, ᾱ) ∀ᾱ ∈ N(ĒP ) ∩N(ĒP

′
).

However, the above equation contradicts Eq. (17), and thus,
N(ĒP )∩N(ĒP

′
) for ĒP δ 6= ĒP

′
δ should be the empty set.

In addition, if N(ĒP )∩N(ĒP
′
) = ∅, a system can determine

the effective power distribution among players above the δ-th
percentile. Therefore, IĒP δ = 1 if and only if N(ĒP ) ∩
N(ĒP

′
) = ∅ for any ĒP δ 6= ĒP

′
δ .

Lemma B.2. N(ĒP )∩N(ĒP
′
) = ∅ for any ĒP δ 6= ĒP

′
δ

if and only if, for any effective power distribution ĒP
?,

N(ĒP
?
) = ∅ or it is not more profitable for any player

with effective power EP ?pi ≥ EP
?
δ to run multiple nodes than

to run only one node.

Proof. It is easy to prove N(ĒP ) ∩ N(ĒP
′
) = ∅ for any

ĒP δ 6= ĒP
′
δ , when it is most profitable for players to collude

or when a player with effective power EPpi ≥ EPδ runs one
node. Therefore, we describe the proof of the other direction.
To do this, we assume that a player with effective power
greater than or equal to EP ?δ runs multiple nodes in the state
with effective power distribution ĒP ? and so the state has the
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resource power distribution ᾱ? (i.e., ᾱ? ∈ N(ĒP
?
)). Here,

we define a function fα→EP : ᾱ 7→ ĒP as fα→EP (ᾱ) =
(EPpi)pi∈P , where the output represents a state in which
each player runs only one node and EPpi = αni . Then ᾱ?

belongs to the set N(fα→EP (ᾱ?)). This is certainly true when
it is not more profitable for some players to delegate their
resource to others or run more than one node in the state with
fα→EP (ᾱ?). Even if it is more profitable for some players
to run more than one node in the state with fα→EP (ᾱ?), the
state can come back to itself after going through a process
where a player runs multiple nodes and then delegates its
resource power to others because ᾱ? ∈ N(ĒP

?
). Lastly, if it

is more profitable for some players to delegate their resource
power to others, the state can also come back to itself after
a player delegates its resource power to others. As a result,
ᾱ? ∈ N(fα→EP (ᾱ?)) and N(ĒP

?
)∩N(fα→EP (ᾱ?)) 6= ∅.

This fact implies that N(ĒP ) ∩ N(ĒP
′
) = ∅ for any

ĒP δ 6= ĒP
′
δ if and only if, for any ĒP , N(ĒP ) = ∅

or players above the δ-th percentile should run only one node.
Note that, in order to satisfy N(ĒP ) = ∅, it should be more
profitable for some players to delegate their resource to others
in the state ĒP .

Lemma B.3. For any ĒP , N(ĒP ) is the empty set or a
player runs only one node if and only if it is most profitable
for all players to form a grand coalition in which there is only
one player running a node, or it is not more profitable for any
player with effective power EPpi ≥ EPδ to run multiple nodes
than to run one node.

Proof. First, we consider that, for any ĒP , N(ĒP ) is the
empty set or a player runs only one node in the state ĒP .
We also assume that N(ĒP

′
) is the empty set for a state

ĒP
′, and then the state ĒP ′ moves to ĒP ? by delegating

behaviors of some players. If the set N(ĒP
?
) is not the

empty set, fEP→α(ĒP
?
) would be in the set N(ĒP

?
)

because there is no player running multiple nodes. Here
note that fEP→α(ĒP

?
) = (α?ni)ni∈N and α?ni = EP ?pi

for Npi = {ni}. Otherwise, if the set N(ĒP
?
) is empty,

more players would engage in delegation of resource power
in the state with ĒP ?. This implies that all players would
eventually cooperate by engaging in the delegation when N(∗)
is continually empty for an arrival state ∗.

We consider the case where all players cooperate. The
value of Uni(α =

∑
pi
EP ?pi) should be not less than∑

αni∈fEP→α(ĒP
?) Uni(αni , ᾱ−ni) because it is most prof-

itable for the player to run only one node in the state where
only one player possesses positive effective power denoted by
α. This implies that N((α)) cannot be the empty set. As a
result, if N(ĒP ) is empty for any ĒP except for (α), it is
most profitable for all players to form a grand coalition where
there is only one node. For the other direction, we omit the
proof because it is trivial.

When a system can find out whether EPmax

EPδ
≤ 1 + ε for the

current state and get EP max if the ratio is greater than 1 + ε,
the probability to reach (m, ε, δ)-decentralization would be

certainly greater than that for when it is not. This is because
if EP max

EP δ
is greater than 1+ε, the mechanismM, which makes

ĒP belong to S, should adjust EP max

EPµ
9 for some µ ≥ γ. Also,

if the system adjusts EP max

EPµ
while not knowing the value of

EP max

EPµ
, the state cannot move in the best direction to (m, ε, δ)-

decentralization. As a result, the following is met:

max
M

lim
t→∞

Pr(Mt
1(ĒP

0
, ᾱ0) ∈ S | IS = 0 or (18)

IS
c

ĒP 100
= 0) ≤ max

M
lim
t→∞

Pr(Mt
1(ĒP

0
, ᾱ0) ∈ S | (19)

IS = 1, IS
c

ĒP 100
= 1) =

max
M

lim
t→∞

Pr(Mt
1(ĒP

0
, ᾱ0) ∈ S |N(S) ∩N(Sc) = ∅

(20)

and N(ĒP ) ∩N(ĒP
′
) = ∅ for any EP max 6= EP ′max),

where IS = 1 (or 0) indicates that a system can (or cannot)
learn the information about whether the current state is in
S, and IS

c

ĒP 100
= 1 (or 0) indicates that a system can (or

cannot) learn effective power of the richest when the current
state is not in S. Note that Eq. (20) is derived by Lemma B.2.
Considering Lemma B.1, B.2, and B.3, one can see that a
mechanism satisfying 1) it is most profitable for all players
to collude or for the richest to run only one node in a state
that does not belong to S and 2) N(S) ∩ N(Sc) = ∅, can
maximize the probability to achieve (m, ε, δ)-decentralization.
Moreover, N(S) ∩ N(Sc) = ∅ implies that N(ĒP ) = ∅ or
fα→EP (N(ĒP )) ⊂ S for any ĒP ∈ S.

Next, we consider a mechanism where, for a state ĒP , it
is most profitable for all players to form a grand coalition
running only one node. Then all players would share reward
R = Uni(ĒP ). Here, we consider a scheme sharing the
reward among joined accounts, and a player can have multiple
accounts if the behavior is more profitable than that the one
that is not. We also denote by Uai(αai , ᾱ−ai) the received
reward of account ai owned resource power αai . Similar to the
above progress, we can show that, in this case, the probability
to reach (m, ε, δ)-decentralization can be maximized when
players above the δ-th percentile should have one account.
Note that when A denotes the set of all accounts, R =∑
ai
Uai∈A(αai , ᾱ−ai) for any A. Therefore, the conditions

to maximize the probability to reach (m, ε, δ)-decentralization
in the sharing scheme correspond to the following: At least the
richest player runs only one node, and ND-2 is satisfied. As
a result, by Lemma B.4, we can derive that the probability
to reach (m, ε, δ)-decentralization is the maximum when the
following is met:

Uai(αai , ᾱ−ai) =
R · αai∑
ai∈A αai

. (21)

Second, we consider a mechanism in which it is not most
profitable for all players to collude and it is most profitable for
the richest player to run only one node when the state is not
in S. In fact, this is equivalent to the case where GR-2 and

9To get a fraction EP max
EPµ

, the system should get EP max and EPµ.
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ND-2 and NS-100 are satisfied. Therefore, from Lemma B.4,
Uni should be Eq. (7) when the state is not in S.

As a result, because Eq. (21) is also a form of Eq. (7), we
can see that, through Lemma V.2, the probability to reach
(m, ε, δ)-decentralization can be maximized when GR-|N |,
ND-|Pα|, and NS-0 are met. Lastly, by presenting Lemma B.4,
we completes the proof of Theorem V.1.

Lemma B.4. Let us consider that GR-2, ND-2, and NS-
100 are met. Then, in order that the probability of reach-
ing (m, ε, δ)-decentralization is the maximum, the following
should be met:

Uni(αni , ᾱ−ni) = F
( ∑
nj∈N

αnj

)
· αni , (22)

where F : R+ 7→ R+.

Proof. According to ND-2 and NS-100, the following equa-
tion is satisfied for any α and set Nα in which a node is an
element and the total resource power of the elements is α:∑

ni∈Nα

Uni

(
αni , ᾱ−ni(Nα)

)
= Unj (αnj = α), (23)

where node nj ∈ Nα and ᾱ−ni(Nα) = (αnk)nk∈Nα,k 6=i.
Therefore, for all n ∈ N, the following is met:

Uni

(α
n
,
[α
n

]n−1)
=
Uni(α)

n
, (24)

where
[
α
n

]n−1
represents the array, which has n− 1 elements

α
n . Note that

[
α
n

]n
is one of possible candidates for Nα

because the sum of elements is α.
Moreover, according to Eq. (23) and Eq. (2) in NS-100, the

following equations are met for any natural number l < n
2 :

Uni

( lα
n
,
( (n− l)α

n

))
+ Uni

( (n− l)α
n

,

(
lα

n

))
= Uni(α),

Uni

( (n− l)α
n

,

(
lα

n

))
≥ (n− l) · Uni

(α
n
,
[α
n

]n−1)
Because the lower the payoff of the richest, the more likely
a system would reach (m, ε, δ)-decentralization, the below
equations should be met to maximize the probability to reach
(m, ε, δ)-decentralization.

Uni

( (n− l)α
n

,

(
lα

n

))
=
n− l
n
· Uni(α),

Uni

( lα
n
,
( (n− l)α

n

))
=
l · Uni(α)

n

This fact implies that Eq. (22) is satisfied for any P of which
size is two.

Next, we assume that Eq. (22) is satisfied for any P of
which size is k(< n). Then we show that

Uni

( l0α
n
,

(
l1α

n
, · · · , lkα

n

))
=
l0
n
· Uni(α),

where l0, l1, · · · , lk ∈ N and l0 = max{l0, l1, · · · , lk}.
According to Eq. (2) and the assumption, the following is
met for any 0 < p ≤ k:

l0 + lp
n

· Uni(α) = Uni

(
l0α

n
,

(
l1α

n
, · · · , lkα

n

))
+

Uni

(
lpα

n
,

(
l0α

n
, · · · , lp−1α

n
,
lp+1α

n
, · · · , lkα

n

))
.

Moreover, the above equation derives the following.

k · Uni
(
l0α

n
,

(
l1α

n
, · · · , lkα

n

))
+

k∑
p=1

Uni

(
lpα

n
, ∗
)

=

k∑
p=1

l0 + lp
n

· Uni(α),

where ∗ =
(
l1α
n , · · · , lkαn

)
. In addition, because

k∑
p=1

Uni

(
lpα

n
, ∗
)

=

k∑
p=1

lp
n
· Uni(α),

Eq. (22) is met for any P of which size is k + 1. By
mathematical induction, Eq. (22) holds for any n and k(< n),
which implies that Eq. (22) is true when relative resource
power of all nodes to total resource power is a rational number.
As a result, by the density of the rational numbers, Eq. (22)
holds for any ᾱ. This completes the proof.

APPENDIX C
PROOF OF LEMMA V.2

The proof of Lemma V.2 is similar to that for Lemma B.4.
Thus, we briefly describe this proof. First, it is trivial for
Eq. (7) to satisfy GR-|N |, ND-|P|, and NS-0. Thus, we show
the proof of the other direction. In other words, we prove
that if the three conditions are met, the utility function should
be Eq, (7). According to ND-|P| and NS-0, the following
equation is satisfied for any α:∑

ni∈Nα

Uni

(
αni ,α

+
−ni(Nα)

)
= Unj (αnj = α, ᾱ−Nα),

where node nj ∈ Nα, the total resource power in the node
set Nα is α, ᾱ−Nα = (αnk)nk 6∈Nα , and α+

−ni(Nα) =
ᾱ−Nα‖(αnk)nk∈Nα,nk 6=ni . Therefore, for all n ∈ N, the
following is met:

Uni

(α
n
,α+
−ni(N

n
α )
)

=
Unj (α, ᾱ−Nnα )

n
,

where all nodes in Nn
α possess α

n and |Nn
α | = n. Note that

Nn
α is one of possible candidates for Nα. The above equation

derives the below equation:

Uni

(
αni ,α

+
−ni(N

Q
α )
)

=
αni
α
· Unj (α, ᾱ−NQ

α
),

where NQα = {ni |αni = qiα, qi ∈ Q} and node nj ∈ NQα .
Here, note that αniα is a rational number. As a result, according
to the density of the rational numbers, the utility Uni is
a linear function for given the sum of resource power of
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nodes (i.e.,
∑
ni∈N αni ), where the coefficient is denoted

by F (
∑
ni∈N αni) as a function of

∑
ni∈N αni . Lastly, the

coefficient F (
∑
ni∈N αni) should be positive to satisfy GR-

|N |.

APPENDIX D
PROOF OF THEOREM V.3

First, we consider that there is the minimum value of ε(> 0)
such that maxx≤A xF (x) = (A−ε)F (A−ε) for a given value
of A. Then, when

∑
αni is A,

U

(
αnk ·

A− ε
A

, ᾱ−nk ·
A− ε
A

)
= F (A− ε) · αnk

A− ε
A

>

U

(
αnk ·

A− ε′

A
, ᾱ−nk ·

A− ε′

A

)
= F (A− ε′) · αnk

A− ε′

A
,

(25)
for any ε′ < ε. Therefore, when all players reduce resource
power of their node at the same rate, their node power would
decrease from αnk to αnk · A−εA , and they earn a higher profit.
We also consider the case where a node does not reduce its
power by

∑
αni−ε∑
αni

times. However, the retaliation of other
nodes can make this behavior less profitable when compared
to the case where the node reduces its power by

∑
αni−ε∑
αni

times, where retaliation strategies are often used in a repeated
game for cooperation. A possible strategy of node ni with
resource power αtni is that the node updates its power αtni to

αt+1
ni =

At+1−αtni
At−αtni

· αtni at time t + 1, where At denotes the
total resource power of nodes at time t. Under this strategy,
because of Eq. (25), if even one node does not reduce its power
by A−ε

A times, all nodes earn a lower profit. As a result, there
is a reachable equilibrium where all players reduce resource
power of their node (i.e., effective power) by A−ε

A times. Note
that, in the equilibrium, the effective power distribution among
players does not change.

Second, we consider that maxx≤A xF (x) = AF (A) for any
A. This fact derives that

Uni(αni + ε, ᾱ−ni) = (αni + ε)F

(∑
ni

αni + ε

)
>

Uni(αni , ᾱ−ni) = αniF

(∑
ni

αni

)
.

The above equation implies that the utility is a strictly increas-
ing function for αni : Uni(αni + ε, ᾱ−ni) > Uni(αni , ᾱ−ni)
for any ε > 0. Thus, all nodes would increase their power for
a higher profit.

To satisfy the second requirement of Def. IV.1, the following
should be satisfied for any two players pi, pj ∈ Ptδ:

EP tpi
EP tpj

≤ 1 + ε,

where EP tpi ≥ EP tpj . Under the utility function Eq. (7), a
player would run one node with its own resource, and the
above equation can be expressed as follows:

αtni
αtnj
≤ 1 + ε,

where Npi = {ni} and Npj = {nj}. Because U(αni , ᾱ−ni)

Figure 2. The function f(x, α, β) represents the right-hand side of Eq. (26).
This graph shows that f(Rmax, α, β) is the maximum in the range x ≤ Rmax.

is a strictly increasing function of αni , all nodes would
increase their resource at rate r per earned net profit. Then

the ratio
αt+1
ni

αt+1
nj

between the resource power of nodes ni and nj
at time t+ 1 is

αtni + r ·Rtni
αtnj + r ·Rtnj

=
αtni
αtnj
·

1 + r · R
t
ni

αtni

1 + r ·
Rtnj
αtnj

>
αtni
αtnj
· 1

1 + r ·
Rtnj
αtnj

.

For ease of reading, a state where αni = α and αnj = β is
denoted by (α, β). Here, note that α is not less than β. Then
we consider one step in which (α, β) moves to (α, β+ry) with
probability p and (α + rx, β) with probability 1 − p, where
x, y ≤ Rmax. Because of

Unj (β)

β − Uni (α)

α = 0, p = x
x+αy

β
.

We also denote Pr (a→ b | (α, β)) by the probability for ratio
αni
αnj

to reach from a to less than b when a state (αni , αnj )

starts from (α, β). Then the following holds:

Pr

(
α

β
→ 1 + ε

∣∣∣∣∣ (α, β)

)
≤ βx

βx+ αy
×

max Pr

(
α

β + ry
→ 1 + ε

∣∣∣∣∣ (α, β + ry)

)
+

αy

βx+ αy

×max Pr

(
α+ rx

β
→ 1 + ε

∣∣∣∣∣ (α+ rx, β)

)
,

(26)

where max Pr( α
β+ry → 1 + ε | (α, β + ry)) indicates the

maximum probability for (αni , αnj ) to reach from (α, β+ry)
to a state satisfying that αni

αnj
≤ 1 + ε, considering all possible

random walks. Similarly, max Pr(α+rxβ → 1+ε | (α+rx, β))
represents the maximum probability for (αni , αnj ) to reach
from (α+ rx, β) to a state satisfying that αni

αnj
≤ 1 + ε. Note

that, in the range 0 ≤ x ≤ Rmax, the right-hand side of Eq. (26)
is the maximum when x = 0.

We denote the right-hand side of Eq. (26) by f(x, α, β).
Then, when assuming 1) limα→∞ f(x, α, β) is a constant in
terms of x and 2) f(x, α, β) is the maximum when x = Rmax,
the probability to reach (m, ε, δ)-decentralization is upper
bounded by the maximum probability to reach (m, ε, δ)-
decentralization under a random walk where αni changes to
αni + rRmax if it increases. For the second assumption, Fig. 2
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describes an example. Note that the value of when x = 0
cannot be greater than that for when x = Rmax because
max Pr(αβ → 1 + ε | (α, β)) is not greater than f(x, α, β).
Moreover, the above fact derives that, even if we extend to one
step in which (α, β) can move to (α, β + ry), (α + rx1, β),
(α + rx2, β), · · · , (α + rxn, β), the probability for the ratio
αni
αnj

to reach from α
β to less than 1 + ε can be the maximum

when xi = Rmax for 1 ≤ i ≤ n. Also, when considering one
step where (α, β) can move to (α, β+ry1), (α, β+ry2), · · · ,
(α, β + ryn), (α + rx, β), the probability for the ratio αni

αnj
to reach from α

β to less than 1 + ε can be the maximum if
x = Rmax. This is because such steps can be expressed as a
linear combination of a step si for i ≤ n in which (α, β) can
move to (α, β + ryi) or (α+ rxi, β). As a result, these facts
imply that it is sufficient to find a function G(α, β) satisfying
the following.

1) The function G(α, β) is equal to or greater than
maxx=Rmax

Pr
(
α
β → 1 + ε

∣∣ (α, β)
)

.
2) The following equation is the maximum when x = Rmax.

max
y

{
βx

βx+ αy
·G(α, β + ry)+

αy

βx+ αy
·G(α+ rx, β)

}
.

(27)

3) The limit value of Eq. (27) when α goes to infinity is a
constant in terms of x.

4) The below equation holds:

G(α, β) ≥ max
y

{
βRmax

βRmax + αy
·G(α, β + ry)+

αy

βRmax + αy
·G(α+ rRmax, β)

}
.

Next, we consider the case where the ratio αni
αnj

changes
from α

β to less than 1 + ε without a process in which αni
increases from α to α + rRmax. The probability for the case
is denoted by P ε0 (α, β). In addition, for the case where αni

αnj
changes from α

β to less than 1+ε with a process in which αni
increases from α to α+krRmax but not to α+(k+1)rRmax, its
probability is denoted by P εk (α, β). Fig. 3 represents examples
for events of which probabilities are P ε0 (α, β), P ε1 (α, β), and
P ε2 (α, β), respectively. For ease of reading, we also denote
Rnj
αnj
− Rni

αni
by D, and then, the following holds:

Unj (αnj , ᾱ−nj )

αnj
− Uni(αni , ᾱ−ni)

αni
= 0

=

∫
D≥d

DPr(D) +

∫
D<d

DPr(D)

≥ dPr(D ≥ d)− Rmax

αni
(1− Pr(D ≥ d))

⇒Pr(D ≥ d) ≤ Rmax

Rmax + dαni

⇒Pr(
Rnj
αnj

≥ d,Rni = 0) ≤ Rmax

Rmax + dαni

By the above equation, we can also derive the following:

Pr
(αt+1

ni

αt+1
nj

≤ x
∣∣∣αtni , αtnj)

≤Pr
(Rtnj
αtnj

≤ 1

r

( 1

x
·
αtni
αtnj
− 1
)

= d
∣∣∣αtni , αtnj)

≤ Rmax

Rmax + dαtni
=

Rmax(1 + rd)

(Rmax + dαtni)(1 + rd)

≤ 1

1 + rd
≤ x ·

αtnj
αtni

if Rmax · r ≤ αtni (28)

Assuming that β
∏n
t=1(1 + rdt) = α

1+ε , Eq. (28) implies

P ε0 (α, β) =

n∏
t=1

Rmax

Rmax + dtα
=

n∏
t=1

Rmax(1 + rdt)

(Rmax + dtα)(1 + rdt)

≤ (1 + ε) · β
α

if Rmax · r ≤ α.

Furthermore,

maxP ε0 (α, β) = max
(d1,··· ,dn)∈S1

n∏
t=1

Rmax

Rmax + dtα

≤ max
(d1,··· ,dn)∈S2

n∏
t=1

Rmax

Rmax + dtα
,

where

S1 =

{
(d1, · · · , dn)

∣∣∣ 0 ≤ dt ≤ Rmax

β
∏t−1
i=1(1 + rdi)

,

β

n∏
t=1

(1 + rdt) =
α

1 + ε

}
⊂

S2 =

{
(d1, · · · , dn)

∣∣∣ 0 ≤ dt, β n∏
t=1

(1 + rdt) =
α

1 + ε

}
.

Because
∏n
t=1

Rmax

Rmax+dtα
is a symmetric and convex function

for variables d1, d2, · · · , dn, it would be the maximum when
a point (d1, d2, · · · , dn) is on the boundary of a set A2. In
other words, if

d1 =
1

r

(
α

β(1 + ε)
− 1

)
and dt = 0 ∀t > 1,

the value of
∏n
t=1

Rmax

Rmax+dtα
is the maximum. Meanwhile,∏n

t=1
Rmax

Rmax+dtα
is the minimum if d1, d2, · · · , dn are the same.

In addition, when Rmax · r = α, P ε0 (α, β) can be maximized,
and the value is (1 + ε)βα .

We define Prk ((α, β)→ (α+ krRmax, β
′)) as the prob-

ability of an event where a point (αni , αnj ) starting from
(α, β) reaches the line αni = α + krRmax before satisfying
αni
αnj

≤ 1 + ε, and the value of αnj of the point at which
(αni , αnj ) meets the line αni = α + kRmax for the first time
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(a) (b) (c)

Figure 3. The figures represent examples for events of which probabilities are P ε0 (α, β), P
ε
1 (α, β), and P ε2 (α, β), respectively. The red point (α, β) is a start

point, and a random walk aims to enter the target zone in which
αni
αnj

≤ 1+ε. The lines l0, l1, l2 and l3 represent αni = α, αni = α+Rmax, αni = α+2Rmax,

and αni = α+ 3Rmax, respectively. The point (αni , αnj ) would descend along the current line or move to the next line.

is β′. Then, for the probability P εk (α, β), the following holds:

P εk (α, β) =
∑
β′

Prk ((α, β)→ (α+ krRmax, β
′))×

P ε0 (α+ krRmax, β
′) ≤

∑
β′

Prk ((α, β)→ (α+ krRmax, β
′))

× rRmax

rRmax + (α+ krRmax) ·
(
α+krRmax

β′(1+ε) − 1
)

(29)
We denote the right-hand side of Eq. (29) by Hk(α, β). Note
that the value of Hk(α, β) indicates the probability of an event
in which the point (αni , αnj ) meets the line αni = α+krRmax

and moves from (α, β) to a point satisfying αni
αnj
≤ 1 + ε. In

this event, if (αni , αnj ) is on the point (α + krRmax, β
′), it

can reach a point satisfying αni
αnj
≤ 1 + ε with probability

rRmax

rRmax + (α+ krRmax) ·
(
α+krRmax

β′(1+ε) − 1
) . (30)

Therefore, the value of Hk(α, β) depends on how the point
(αni , αnj ) reaches the line αni = α+ krRmax.

Next, we find when Hk(α, β) can be maximized. Note that
the value of H0(α, β) is determined as Eq. (30). Thus, we
first consider when k = 1 and denote the value of Hk(α, β)
under a random walk W by HWk (α, β). Also, we assume
that two random walks W1 and W2 exist. In W1, the point
(αni , αnj ) on the line αni = α can move to either the
point (α + rRmax, αnj ) or the point (α, α

1+ε ). If the point
is on the line αni = α + rRmax, it can move to either the
point (α + 2rRmax, αnj ) or the point (α + rRmax,

α+rRmax

1+ε ).
The random walk W2 is similar to W1 except that there
is one additional path from the line αni = α to the line
αni = α + rRmax when compared to W1. Fig. 4 represents
W1 and W2. While the random walk W1 has only one point
(α+rRmax, β) at which a state (αni , αnj ) can meet the line l1,
(αni , αnj ) can meet the line l1 at two points (α + rRmax, β)
and (α + rRmax, β(1 + rd01)) in random walk W2. Fig. 4a
represents the possible path of random walk W1, and Figs. 4b
and 4c show two possible paths of random walk W2.

We show that HW2
1 (α, β) is greater than HW1

1 (α, β). Re-
ferring to Fig. 4, the following is met:

β(1 + rd0) =
α

1 + ε
, β(1 + rd1) =

α+ rRmax

1 + ε
,

β(1 + rd01)(1 + rd02) =
α

1 + ε
,

β(1 + rd01)(1 + rd′1) =
α+ rRmax

1 + ε
,

Rmax(Rmax + αd0) ≤ (Rmax + αd01)(Rmax + αd02). (31)

Also, HW1
1 (α, β) and HW2

1 (α, β) are

Rmax

Rmax + (α+ rRmax)d1
· αd0
Rmax + αd0

and

αd01
Rmax + αd01

· Rmax

Rmax + (α+ rRmax)d1
+

Rmax

Rmax + αd01

× αd02
Rmax + αd02

· Rmax

Rmax + (α+ rRmax)d′1
,

respectively. Because of Eq. (31), HW2
1 (α, β) is less than

αd01
Rmax + αd01

· Rmax

Rmax + (α+ rRmaxd1)
+

(
Rmax

Rmax + αd01

− Rmax

Rmax + αd0

)
· Rmax

(α+ rRmax)d′1
.

(32)
By the below equations, Eq. (32) is greater than HW1

1 (α, β).

1

Rmax + (α+ rRmax)d′1
≥ 1

Rmax + (α+ rRmax)d1
⇔

1

Rmax + (α+ rRmax)d′1
×
(

Rmax

Rmax + αd01
− Rmax

Rmax + αd0

)
≥ 1

Rmax + (α+ rRmax)d1
×
(

αd0
Rmax + αd0

− αd01
Rmax + αd01

)
⇔ HW1

1 (α, β) < Eq. (32)

Here, note that d′1 < d1. As a result, HW2
1 (α, β) >

HW1
1 (α, β). Moreover, HW2

1 (α, β) is a concave function of
d01, which implies that the value of HW2

1 (α, β) would more
efficiently increase when d01 is closer to 0. Considering this
fact, we can see that the more densely there exist points at
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(a) Random walk W1 (b) Random walk W2 (c) Random walk W2

Figure 4. The figures represent two random walksW1 andW2, respectively. The red points indicate points to which the state (αni , αnj ) can move through
each random walk. Moreover, green paths indicate the possible path in each random walk. In W2, there is one red point (α, β(1 + rd01)) on line l0 in
addition to the red point of W1. Here, 1 + rd0 = (1 + rd01)(1 + rd02).

(a) Random walk W3 (b) Random walk W4 (c) Random walk W4

Figure 5. The figures represent two random walks W3 and W4, respectively. The red points indicate points to which the state (αni , αnj ) can change the
moving direction. Moreover, green paths indicate the possible path in each random walk. In W4, there is another red point (α, β′) on line l0 in addition to
the red point of W3.

which (αni , αnj ) can meet the line αni = α + rRmax for the
first time, the greater the value of H1(α, β) is.

Next, we consider two random walks, W3 and W4, and
find when HWk (α, β) can be maximized. Hereafter, a point
(αni , αnj ), which can move to the next line, (e.g., red points
represented in Fig. 4) is called a break point. The random walk
W4 has one additional break point on the line l0 : αni = α
in comparison with W3. Therefore, the number of points at
which W4 can meet the line αni = α + krRmax for the first
time is greater than that for W3 by 1. Fig. 5 represents the
two random walks W3 and W4, and the following holds:

β′ = β(1 + rx), β(1 + rdk) = α+ krRmax,

β′(1 + rd′k) = α+ krRmax,

β(1 + rdk+1) = α+ (k + 1)rRmax,

β′(1 + rd′k+1) = α+ (k + 1)rRmax

for β′ > β. Then we find ∂(H
W4
k −HW3

k )

∂x

∣∣∣
x=0

.

First, HW3

k and HW4

k can be expressed as follows:

HW3

k =

k−1∏
i=0

(α+ irRmax)
(
α+irRmax

(1+ε)β − 1
)

rRmax + (α+ irRmax)
(
α+irRmax

(1+ε)β − 1
)×

rRmax

rRmax + (α+ krRmax)
(
α+krRmax

(1+ε)β − 1
) ,

HW4

k =

k−1∏
i=1

(α+ irRmax)
(
α+irRmax

(1+ε)β − 1
)

rRmax + (α+ irRmax)
(
α+irRmax

(1+ε)β − 1
)

× αx

Rmax + αx
· rRmax

rRmax + (α+ krRmax)
(
α+krRmax

(1+ε)β − 1
)

+
Rmax

Rmax + αx
·
k−1∏
i=0

(α+ irRmax)
(

α+irRmax

(1+ε)β(1+rx) − 1
)

rRmax + (α+ irRmax)
(

α+irRmax

(1+ε)β(1+rx) − 1
)

× rRmax

rRmax + (α+ krRmax)
(

α+krRmax

(1+ε)β(1+rx) − 1
) .

In fact, when ∂(H
W4
k −HW3

k )

∂x

∣∣∣
x=0

is positive, it is always greater

than H
W4
k −HW3

k

x for any 0 < x < 1
r ·
(

α
(1+ε)β − 1

)
. In addition,

if ∂(H
W4
k −HW3

k )

∂x

∣∣∣
x=0

is negative, HW3

k is greater than HW4

k .

These facts implies that if ∂(H
W4
k −HW3

k )

∂x

∣∣∣
x=0

is positive, HWk
can be maximized when there exist densely break points on
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the line l0. Meanwhile, if ∂(H
W4
k −HW3

k )

∂x

∣∣∣
x=0

is negative, HWk
can be maximized when there is no break point on line l0.

The derivative ∂(H
W4
k −HW3

k )

∂x

∣∣∣
x=0

is equal to ∂H
W4
k

∂x

∣∣∣
x=0

because W3 is constant in terms of x. In addition, the value
of ∂H

W4
k

∂x

∣∣∣
x=0

is equal to the value of ∂Ak

∂x

∣∣∣
x=0

, where

Ak =

k−1∏
i=0

(α+ irRmax)
(

α+irRmax

(1+ε)β(1+rx) − 1
)

rRmax + (α+ irRmax)
(

α+irRmax

(1+ε)β(1+rx) − 1
)

× rRmax

rRmax + (α+ krRmax)
(

α+krRmax

(1+ε)β(1+rx) − 1
)

The value of ∂Ak

∂x

∣∣∣
x=0

is expressed as

− r ·Ak ·
k−1∑
i=0

(l + i)2

((l + i)2
R′max

(1+ε)β − l − i+ 1)2
×

1 + (l + i)((l + i)
R′max

(1+ε)β − 1)

(l + i)((l + i)
R′max

(1+ε)β − 1)
+ r ·Ak×

(l + k)2

((l + k)2
R′max

(1+ε)β − l − k + 1)2
×(

1 + (l + k)((l + k)
R′max

(1 + ε)β
− 1)

)
,

where R′max = rRmax and l = α
R′max

. Through the above

equation, one can see that if ∂(H
W4
k −HW3

k )

∂x

∣∣∣
x=0

is positive

when l = l0,
∂(H

W4
k −HW3

k )

∂x

∣∣∣
x=0

is also positive for all l ≥ l0.
In other words, when the derivative value is positive for
α = α0, it is positive for all α > α0.

Also, we assume that HW3

k (α, β) > HW4

k (α, β). This fact
implies that

f1 ·
Rmax

Rmax + (α+ krRmax)dk
+ f2 ·

Rmax

Rmax + (α+ krRmax)d′k

< f3 ·
Rmax

Rmax + (α+ krRmax)dk
,

where f1, f2, and f3 are determined byW3 andW4. To prove
that HW3

k+1(α, β) > HW4

k+1(α, β), it is sufficient to show the
following:

f1 · (α+ krRmax)dk
Rmax + (α+ krRmax)dk

· Rmax

Rmax + (α+ (k + 1)rRmax)dk+1
+

f2 · (α+ krRmax)d
′
k

Rmax + (α+ krRmax)d′k
· Rmax

Rmax + (α+ (k + 1)rRmax)d′k+1

<

f3 · (α+ krRmax)dk
Rmax + (α+ krRmax)dk

· Rmax

Rmax + (α+ (k + 1)rRmax)dk+1
.

(33)

Then the above equation can be derived as follows:

(α+ krRmax)
2(β′ − β) + (α+ (k + 1)rRmax)

2(β − β′) < 0

⇔ (α+ krRmax − β)(β′rRmax + (α+ (k + 1)rRmax)×
(α+ (k + 1)rRmax − β′) > (α+ krRmax − β′)×
(βrRmax + (α+ (k + 1)rRmax)(α+ (k + 1)rRmax − β))

⇔ dk(Rmax + (α+ (k + 1)rRmax)d
′
k+1) > d′k×

(Rmax + (α+ (k + 1)rRmax)dk+1)⇒ Eq. (33).
(34)

This fact implies that if ∂H
W4
k

∂x

∣∣∣
x=0

is negative when k = k0,
∂H
W4
k

∂x

∣∣∣
x=0

is negative for all k > k0.

Now, we consider when lk for k ≥ 1 has an additional break
point. Let us assume that there are two random walksWk

1 and
Wk

2 , whereWk
2 has an additional break point (α+krRmax, β2)

on lk (k ≥ 1) below the final break point (α + krRmax, β1)
located on lk (k ≥ 1) in the random walk Wk

1 . Here, we
assume that β2 = (1+rx)β1. Then, HW

k
1

k+1 < H
Wk

2

k+1, and this is
easily proven by using the proof of that HW1

1 < HW2
1 , which

is described above. In addition, if
∂H
Wk2
k+1−H

Wk1
k+1

∂x

∣∣∣
x=0

positive,

it is always greater than
H
Wk2
k+1−H

Wk1
k+1

x for any 0 < x < 1
r ·(

α+krRmax

(1+ε)β1
− 1
)

, and thus H
Wk

2

k+1(α, β) can more efficiently
increase when x is closer to 0.

Next, we consider H
Wk

1

k+N (α, β) and H
Wk

2

k+N (α, β). The

derivative
∂(H

Wk2
k+N−H

Wk1
k+N )

∂x

∣∣∣
x=0

is equal to
∂H
Wk2
k+N

∂x

∣∣∣
x=0

, and it
can be expressed as

− rANk ·
N−1∑
i=0

(l + k + i)2

((l + k + i)2
R′max

(1+ε)β − l − k − i+ 1)2
×

1 + (l + k + i)((l + k + i)
R′max

(1+ε)β − 1)

(l + k + i)((l + k + i)
R′max

(1+ε)β − 1)
+ rANk ×

(l + k +N)2

((l + k +N)2
R′max

(1+ε)β − l − k −N + 1)2
×(

1 + (l + k +N)((l + k +N)
R′max

(1 + ε)β
− 1)

)
,

where R′max = rRmax, l = α
R′max

, and

ANk =

k+N−1∏
i=k

(α+ irRmax)
(

α+irRmax

(1+ε)β(1+rx) − 1
)

rRmax + (α+ irRmax)
(

α+irRmax

(1+ε)β(1+rx) − 1
)

× rRmax

rRmax + (α+ (k +N)rRmax)
(
α+(k+N)rRmax

(1+ε)β(1+rx) − 1
) .

This implies that if
∂H
Wk2
k+N

∂x

∣∣∣
x=0

is positive when k = k0,

∂H
Wk2
k+N

∂x

∣∣∣
x=0

is positive for all k > k0. In fact, when k = 1,

∂H
Wk2
k+N

∂x

∣∣∣
x=0

is positive regardless of N and α. Therefore, for
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all k > 0,
∂H
Wk2
k+N

∂x

∣∣∣
x=0

is positive regardless of N and α. In

other words, HWk (α, β) can be maximized when line li has
infinitely many break points for all 0 < i < k.

When we define the random walk Wk
max as Wk

max =
arg maxW HWk (α, β), the random walk Wk

max has infinite
break points on li for 0 < i < k. Formally, there always
exist break points in interval (α + irRmax, (β1, β2)), for β ≤
β1 < β2 ≤ α+irRmax

1+ε . Meanwhile, Wk
max has no break point on

lk. In other words, in Wk
max, whenever a point moves to the

line lk : αni = α + krRmax, the point can reach the target
zone where αni

αnj
≤ 1 + ε, without break points. Considering

the above facts, the following holds:

max
W

HWk (α, β) = H
Wk

max

k (α, β) =

lim
d→0

∑
∀j<k:

∑j
i=0 xi<m

d
j

{
rRmax

rRmax + (α+ krRmax) ·Dk

×
k−1∏
i=0

hi(xi, d)

}
, (35)

where

md
j = log1+rd

(
α+ jrRmax

(1 + ε)β

)
for j > 0, md

0 = log1+rd

(
α+ jrRmax

(1 + ε)β?

)
,

Dk =
1

r
·

(
α+ krRmax

(1 + ε)β(1 + rd)
∑k−1
i=0 xi

− 1

)
,

hi(xi, d) =

(
rRmax

rRmax + (α+ irRmax)d

)xi
·
(

(α+ irRmax)d

rRmax + (α+ irRmax)d

)

The notation β? denotes the root of the following equation for
β :

k−1∑
i=0

(l + i)2

((l + i)2
R′max

(1+ε)β − l − i+ 1)2
×

1 + (l + i)((l + i)
R′max

(1+ε)β − 1)

(l + i)((l + i)
R′max

(1+ε)β − 1)
=

(l + k)2

((l + k)2
R′max

(1+ε)β − l − k + 1)2
×(

1 + (l + k)((l + k)
R′max

(1 + ε)β
− 1)

)
,

where R′max = rRmax and l = α
R′max

. Note that the root is unique.

Then we denote gk(α, β) by HW
k
max

k (α, β) for ease of reading.
Finally, because

max
x=Rmax

Pr

(
α

β
→ 1 + ε

∣∣∣ (α, β)

)
= max

∞∑
k=0

P εk (α, β)

≤
∞∑
k=0

maxP εk (α, β) =

∞∑
k=0

gi(α, β),

the probability for a state (αni , αnj ) starting from (α, β) to
reach the target zone in which satisfies αni

αnj
≤ 1 + ε is upper

bounded by

lim
d→0
n→∞

n∑
k=0

{ ∑
∀j<k:

∑j
i=0 xi<m

d
j

{ rRmax

rRmax + (α+ krRmax) ·Dk

×
k−1∏
i=0

hi(xi, d)
}}

,

(36)
which is denoted by G(α, β). Note that

g0(α, β) ≥ Rmax

Rmax + αd
· g0(α, β(1 + rd)) and

gi(α, β) ≥ Rmax

Rmax + αd
· gi(α, β(1 + rd))+

αd

Rmax + αd
· gi−1(α+ rRmax, β) ∀i > 0.

Therefore, the following holds:

G(α, β) ≥ Rmax

Rmax + αd
·G(α, β(1+rd))+

αd

Rmax + αd
·G(α+rRmax, β).

Also, Eq. (27) is the maximum when x = Rmax. More
specifically, Eq. (27) has a similar form to that shown in Fig. 2.
Lastly, because the limit value of G(α, β) when α goes to
infinity is 0, it is a constant in terms of x. As a result,

lim
t→∞

Pr
[EP tmax
EP tδ

< 1 + ε
]
< G(αMAX, αδ),

and G(αMAX, αδ) is denoted by Gε(fδ, rRmax

αMAX
) in Theorem V.3.

Moreover, the limit value of Gε(fδ, rRmax

αMAX
) when fδ goes to 0

is 0. This completes the proof of Theorem V.3.

APPENDIX E
SIMULATION

Figure 6. In this figure, when rRmax
αMAX

is 10−2, Gε(fδ,
rRmax
αMAX

) (y-axis) is
presented with regard to fδ (x-axis) and ε.
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Figure 7. In this figure, when rRmax
αMAX

is 10−4, Gε(fδ,
rRmax
αMAX

) (y-axis) is
presented with regard to fδ (x-axis) and ε.
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